VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI # **B.E. in Artificial Intelligence and Machine Learning** # **Scheme of Teaching and Examinations 2022** Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023-24) | | | | | | Te | aching Hour | s /Week | | | Exam | ination | | | |-----------|-------------|----------------|--|--|-------------------|---------------|---------------------------------------|-----|----------------------------------|------------------|------------------|----------------|------------------| | SI.
No | Course | Course
Code | Course Title | Teaching Department
(TD) and Question
Paper Setting Board
(PSB) | Theory
Lecture | Tuto
rial | Prac
tical
/
Dra
win
g | SDA | Dur
atio
n in
hou
rs | CIE
Mar
ks | SEE
Mar
ks | Total
Marks | r
e
d
i | | | | | | | L | Т | P | S | | | | | s | | 1 | PCC/BS
C | BCS301 | Mathematics for Computer Science | TD : Maths
PSB : Maths | 3 | 2 | 0 | | 03 | 50 | 50 | 100 | 4 | | 2 | IPCC | BCS302 | Digital Design & Computer Organization | TD : AI
PSB : CS | 3 | 0 | 2 | | 03 | 50 | 50 | 100 | 4 | | 3 | IPCC | BCS303 | Operating Systems | TD : AI
PSB : CS | 3 | 0 | 2 | | 03 | 50 | 50 | 100 | 4 | | 4 | PCC | BCS304 | Data Structures and Applications | TD : AI
PSB : CS | 3 | 0 | 0 | | 03 | 50 | 50 | 100 | 3 | | 5 | PCCL | BCSL305 | Data Structures Lab | TD : AI
PSB : CS | 0 | 0 | 2 | | 03 | 50 | 50 | 100 | 1 | | 6 | ESC | BXX306x | ESC/ETC/PLC | TD : AI
PSB : CS | 2 | 0 | 2 | | 03 | 50 | 50 | 100 | 3 | | 7 | UHV | BSCK307 | Social Connect and Responsibility | Any Department | 0 | 0 | 2 | | 01 | 100 | | 100 | 1 | | 8 | AEC/ | BXX358x | Ability Enhancement Course/Skill Enhancement | TD and PSB: Concerned department | If th | ne course is | a Theory
0 | | 01 | 50 | 50 | 100 | 1 | | 0 | SEC | DAASSOA | Course – III | | | course is a l | | 1 | 02 | 30 | 30 | 100 | 1 | | | | BNSK359 | National Service Scheme (NSS) | NSS coordinator | 0 | 0 | 2 | | | | | | +- | | 9 | MC | BPEK359 | Physical Education (PE) (Sports and Athletics) | Physical Education Director | 0 | 0 | 2 | | | 100 | | 100 | 0 | | | | ВУОК359 | Yoga | Yoga Teacher | | | | | | | | | | | | | | , | , | | • | • | | Total | 550 | 350 | 900 | 2 | PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation.K: This letter in the course code indicates common to all the stream of engineering. ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course | Engineeri | Engineering Science Course (ESC/ETC/PLC) (Note-Student should opt for the course which should not be similar to the course opted in 1st Year) | | | | | | | | | |---|---|------------------|-----------------|--|--|--|--|--|--| | BCS306A | BCS306A Object Oriented Programming with Java BDS306C Data Analytics with R | | | | | | | | | | BDS306B Python Programming for Data Science BAI306D | | | | | | | | | | | | Ability Enhanceme | ent Course – III | | | | | | | | | BCS358A | BCS358A Data Analytics with Excel BCS358C Project Management with Git | | | | | | | | | | BAI358B | Ethics and Public Policy for Al | BAI358D | PHP Programming | | | | | | | **Professional Core Course (IPCC):** Refers to Professional Core Course Theory Integrated with practicals of the same course. Credit for IPCC can be 04 and its Teaching—Learning hours (L : T : P) can be considered as (3 : 0 : 2) or (2 : 2 : 2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23 may please be referred. National Service Scheme /Physical Education/Yoga: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), and Yoga(YOG) with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree. # VARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI **B.E. in Artificial Intelligence and Machine Learning** # **Scheme of Teaching and Examinations2022** Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023-24) | | | | | Teaching | 1 | eaching | Hours /We | ek | | Exam | ination | | | |-----------|-------------|------------------|--|--|---------------------------|----------------------------------|---------------------------------------|-----------------|----------------------------------|------------------|------------------|--------------------|---------------| | SI.
No | | Course and Paper | | Department (TD) and Question Paper Setting Board (PSB) | The
ory
Lect
ure | T
u
t
o
ri
a
I | Prac
tical
/
Dra
win
g | Self -
Study | Dur
atio
n in
hou
rs | CIE
Mar
ks | SEE
Mark
s | Total
Mar
ks | C r e d i t s | | | | | | | L | Т | P | S | | | | | | | 1 | PCC/BS
C | BCS401 | Analysis & Design of Algorithms | TD : AI
PSB : CS | 3 | 0 | 0 | | 03 | 50 | 50 | 100 | 3 | | 2 | IPCC | BAD402 | Artificial Intelligence | TD : AI
PSB : CS | 3 | 0 | 2 | | 03 | 50 | 50 | 100 | 4 | | 3 | IPCC | BCS403 | Database Management Systems | TD : AI
PSB : CS | 3 | 0 | 2 | | 03 | 50 | 50 | 100 | 4 | | 4 | PCCL | BCSL404 | Analysis & Design of Algorithms Lab | TD : AI
PSB : CS | 0 | 0 | 2 | | 03 | 50 | 50 | 100 | 1 | | 5 | ESC | BXX405x | ESC/ETC/PLC | TD: AI/Maths
PSB : CS/Maths | 2 | 2 | 0 | | 03 | 50 | 50 | 100 | 3 | | | | | | | If the course is Theory | | eory | 01 | | | | | | | C | AEC/ | DDC4ECv | Ability Enhancement Course/Skill | TD : Al | 1 | 0 | 0 | | 01 | Ε0 | Ε0 | 100 | 1 | | 6 | SEC | BDS456x | Enhancement Course- IV | PSB : CS | If t | he cou | ırse is a | lab | 02 | 50 | 50 | 100 | 1 | | | | | | | 0 | 0 | 2 | | 02 | | | | | | 4 | BSC | BBOC407 | Biology For Computer Engineers | TD / PSB: BT, CHE, | 2 | 0 | 0 | | 03 | 50 | 50 | 100 | 2 | | 7 | UHV | BUHK408 | Universal human values course | Any Department | 1 | 0 | 0 | | 01 | 50 | 50 | 100 | 1 | | | | BNSK459 | National Service Scheme (NSS) | NSS coordinator | | | | | | | | | | | 9 | MC | BPEK459 | Physical Education (PE) (Sports and Athletics) | Physical Education
Director | 0 | 0 | 2 | | | 100 | | 100 | 0 | | | | BYOK459 | Yoga | Yoga Teacher | Total | 500 | 400 | 900 | 19 | **PCC**: Professional Core Course, **PCCL**: Professional Core Course laboratory, **UHV**: Universal Human Value Course, **MC**: Mandatory Course (Non-credit), **AEC**: Ability Enhancement Course, **SEC**: Skill Enhancement Course, **L**: Lecture, **T**: Tutorial, **P**: Practical **S=SDA**: Skill Development Activity, **CIE**: Continuous Internal Evaluation, **SEE**: Semester End Evaluation. K: This letter in the course code indicates common to all the stream of engineering. | | Ability Enhancement Course / Skill Enhancement Course – IV | | | | | | | | | | |----------|--|---------------|-------------------------|--|--|--|--|--|--|--| | BDSL456A | BDSL456A Scala (0:0:2) BDSL456C MERN (0:0:2) | | | | | | | | | | | BDSL456B | MangoDB (0:0:2) | BDSL456D | Julia (0:0:2) | | | | | | | | | | Engineering Science Cou | rse (ESC/ETC/ | PLC) | | | | | | | | | BCS405A | Discrete Mathematical Structures | BCS405C | Optimization Technique | | | | | | | | | BAI405B | Metric Spaces | BAI405D | Algorithmic Game Theory | | | | | | | | Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practical of the same course. Credit for IPCC can be 04 and its Teaching—Learning hours (L : T : P) can be considered as (3 : 0 : 2) or (2 : 2 : 2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23 National Service Scheme /Physical Education/Yoga: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), and Yoga(YOG) with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately
scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the courses is mandatory for the award of degree. # VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI **B.E. in Artificial Intelligence and Machine Learning** # **Scheme of Teaching and Examinations2022** Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023-24) | V JEIV | IESTER | | | Teaching | 1 1 | eaching | Hours /Wee | ek | | Exam | ination | | | |-----------|--------|------------------------|--|--|---------------------------|-----------------------------|----------------------------------|-----|----------------------------------|------------------|------------------|--------------------|-----------------------------| | SI.
No | | ourse and
urse Code | Course Title | Department (TD) and Question Paper Setting Board (PSB) | The
ory
Lect
ure | T
u
t
o
ri
a | Prac
tical
/
Dra
win | SDA | Dur
atio
n in
hou
rs | CIE
Mar
ks | SEE
Mark
s | Total
Mar
ks | C
r
e
d
it
s | | | | | | | L | Т | P | S | | | | | | | 1 | HSMS | BAI501 | Software Engineering & Project Management (This course must be pertaining to economics and management of the concerned degree program. The course syllabus should have both economics and management topics and the course title should bear the word Management.) | TD : AI
PSB : AI | 3 | 0 | 0 | | 03 | 50 | 50 | 100 | 3 | | 2 | IPCC | BAI502 | Computer Networks | TD : AI
PSB : AI | 3 | 0 | 2 | | 03 | 50 | 50 | 100 | 4 | | 3 | PCC | BAI503 | Theory of Computation | TD : AI
PSB : AI | 3 | 2 | 0 | | 03 | 50 | 50 | 100 | 4 | | 4 | PCCL | BAIL504 | Data Visualization Lab | TD : AI
PSB : AI | 0 | 0 | 2 | | 03 | 50 | 50 | 100 | 1 | | 5 | PEC | BAI515x | Professional Elective Course | TD : AI
PSB : AI | 3 | 0 | 0 | | 03 | 50 | 50 | 100 | 3 | | 6 | PROJ | BAI586 | Mini Project | TD : AI
PSB : AI | 0 | 0 | 4 | | 03 | 100 | | 100 | 2 | | 7 | AEC | BRMK557 | Research Methodology and IPR | TD: HSM
PSB : HSM | 2 | 2 | 0 | | 02 | 50 | 50 | 100 | 3 | | 8 | МС | BESK508 | Environmental Studies | TD: HSM
PSB : HSM | 2 | 0 | 0 | | 02 | 50 | 50 | 100 | 2 | | | | BNSK559 | National Service Scheme (NSS) | NSS coordinator | | | | | | | | | | | 9 | MC | BPEK559 | Physical Education (PE) (Sports and Athletics) | Physical Education
Director | 0 | 0 | 2 | | | 100 | | 100 | 0 | | | | BYOK559 | Yoga | Yoga Teacher | | | 1 | | | | | | | | | | | Total | 500 | 300 | 800 | 22 | |---------|-------------------------------|---------------|------------------------------|-----|-----|-----|----| | | Professional El | ective Course | | | | | | | BAI515A | Computer Vision | BAI515C | Nonlinear Control Techniques | | | | | | BAI515B | Information Theory and Coding | BAI515D | Distributed Systems | | | | | PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SAI: Semester End Evaluation. K: The letter in the course code indicates common to all the stream of engineering. PROJ: Project /Mini Project. PEC: Professional Elective Course **Professional Core Course (IPCC):** Refers to Professional Core Course Theory Integrated with practicals of the same course. Credit for IPCC can be 04 and its Teaching–Learning hours (L : T : P) can be considered as (3 : 0 : 2) or (2 : 2 : 2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23 National Service Scheme /Physical Education/Yoga: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), and Yoga(YOG) with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree. Mini-project work: Mini Project is a laboratory-oriented/hands on course that will provide a platform to students to enhance their practical knowledge and skills by the development of small systems/applications etc. Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini- project can be assigned to an individual student or to a group having not more than 4 students. # **CIE procedure for Mini-project:** - (i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two faculty members of the Department, one of them being the Guide. The CIE marks awarded for the Mini-project work shall be based on the evaluation of the project report, project presentation skill, and question and answer session in the ratio of 50:25:25. The marks awarded for the project report shall be the same for all the batches mates. - (ii) Interdisciplinary: Continuous Internal Evaluation shall be group-wise at the college level with the participation of all the guides of the project. The CIE marks awarded for the Mini-project, shall be based on the evaluation of the project report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates. No SEE component for Mini-Project. **Professional Elective Courses (PEC):** A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in the Engineering and Technology curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of engineering. Each group will provide an option to select one course. The minimum number of students' strengths for offering a professional elective is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10. # VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI **B.E. in Artificial Intelligence and Machine Learning** # **Scheme of Teaching and Examinations2022** Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023-24) | VI SEN | /IESTER | | X | Jiii tiie dodd | | | | | | | | | | | |----------------------|----------|-----------------------|--|--|----------------|---------------------------|------------------------------|---------------------------------------|-----------|----------------------------------|------------------|------------------|--------------------|-----------------------------| | | Teaching | | | k | | Exam | ination | | | | | | | | | SI.
No | | urse and
irse Code | Course Title | Departmer
and Ques
Paper Se
Board(I | stion
tting | The
ory
Lect
ure | T
u
t
o
ri
al | Prac
tical
/
Dra
win
g | SDA | Dur
atio
n in
hou
rs | CIE
Mar
ks | SEE
Mark
s | Total
Mark
s | C
r
e
d
it
s | | | | 1 | | | | L | T | P | S | | | | | | | 1 | IPCC | BAI601 | Natural Language Processing | TD : AI
PSB : AI | | 3 | 0 | 2 | | 03 | 50 | 50 | 100 | 4 | | 2 | PCC | BAI602 | Machine Learning -I | TD : AI
PSB : AI | | 4 | 0 | 0 | | 03 | 50 | 50 | 100 | 4 | | 3 | PEC | BAI613x | Professional Elective Course | TD : AI
PSB : AI | | 3 | 0 | 0 | | 03 | 50 | 50 | 100 | 3 | | 4 | OEC | BAI654x | Open Elective Course | TD : AI
PSB : AI | | 3 | 0 | 0 | | 03 | 50 | 50 | 100 | 3 | | 5 | PROJ | BAI685 | Project Phase I | TD : AI
PSB : AI | | 0 | 0 | 4 | | 03 | 100 | | 100 | 2 | | 6 | PCCL | BAIL606 | Machine Learning lab | TD : AI
PSB : AI | | 0 | 0 | 2 | | 03 | 50 | 50 | 100 | 1 | | 7 | | | | | | If the co | urse is o | ffered as a | Theory | | | | | | | | AEC/SD | | Ability Enhancement Course/Skill Development | TD and I | | 1 | 0 | 0 | | 0.4 | | | 400 | | | | Ċ | BAI657x | Course V | Concern | | If cours | e is offe | red as a p | oractical | 01 | 50 | 50 | 100 | 1 | | | | | | departm | ient | 0 | 0 | 2 | | | | | | | | | | BNSK658 | National Service Scheme (NSS) | NSS coord | linator | | | | | | | | | | | 8 | MC | BPEK658 | Physical Education (PE) (Sports and Athletics) | Physical Edi
Direct | | 0 | 0 | 2 | | | 100 | | 100 | 0 | | | | BYOK658 | Yoga | Yoga Tea | acher | | | | | | | | | | | | | | _ | f | -1: 0- | | | | | Total | 500 | 300 | 800 | 18 | | BAI61 | 2 / | Human-Centre | | fessional Elec | BAI613C | | Placks | hain Techn | ology | | | | | | | BAI61 | | Cloud Comput | | | BAI613C | | | eries Analy | | | | | | | | DAIU1. | JU | ciouu comput | шь |
Onen Flective | | , | iiiie 3 | Ci ies Ailai | 1313 | | | | | | | Open Elective Course | | | | | | | | | | | | | | | | BAI654A | Introduction to Data Structures | BAI654C | Mobile Application Development | |---------|-----------------------------------|---------|--------------------------------| | BAI654B | Fundamentals of Operating Systems | BAI654D | | #### Ability Enhancement Course / Skill Enhancement Course-V | Tibility Elitarice Tene Course / Skill Elitarice Course V | | | | | | | | |---|----------------|---------|---------------|--|--|--|--| | BAI657A | Explainable AI | BAI657C | Generative Al | | | | | | BAI657B | PyTorch | BAI657D | Devops | | | | | PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. K: The letter in the course code indicates common to all the stream of engineering. PROJ: Project /Mini Project. PEC: Professional Elective Course. PROJ: Project Phase -I, OEC: Open Elective Course Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practicals of the same course. Credit for IPCC can be 04 and its Teaching—Learning hours (L : T : P) can be considered as (3 : 0 : 2) or (2 : 2 : 2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23 National Service Scheme /Physical Education/Yoga: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), and Yoga(YOG) with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree. **Professional Elective Courses (PEC):** A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in the Engineering and Technology curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of engineering. Each group will provide an option to select one course. The minimum number of students' strengths for offering professional electives is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10. # **Open Elective Courses:** Students belonging to a particular stream of Engineering and Technology are not entitled to the open electives offered by their parent Department. However, they can opt for an elective offered by other Departments, provided they satisfy the prerequisite condition if any. Registration to open electives shall be documented under the guidance of the Program Coordinator/ Advisor/Mentor. The minimum numbers of students' strength for offering Open Elective Course is 10. However, this condition shall not be applicable to class where the admission to the program is less than 10. **Project Phase-I:** Students have to discuss with the mentor /guide and with their helphe/she has to complete the literature survey and prepare the report and finally define the problem statement for the project work. # VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI **B.E. in Artificial Intelligence and Machine Learning** # **Scheme of Teaching and Examinations2022** Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023-24) | | | | | Teaching | | Teaching | Hours /Wee | k | | Exam | ination | | | |-----------|------|-----------------------|--|--|---------------------------|------------------------------|---------------------------------------|----------|----------------------------------|------------------|------------------|--------------------|-----------------------------| | SI.
No | | urse and
urse Code | Course Title | Department (TD) and Question Paper Setting Board (PSB) | The
ory
Lect
ure | T
u
t
o
ri
al | Prac
tical
/
Dra
win
g | SDA
S | Dur
atio
n in
hou
rs | CIE
Mar
ks | SEE
Mark
s | Total
Mark
s | C
r
e
d
it
s | | 1 | IPCC | BAI701 | Deep Learning & Reinforcement Learning | TD : AI
PSB : AI | 3 | 0 | 2 | | 03 | 50 | 50 | 100 | 4 | | 2 | IPCC | BAI702 | Machine Learning -II | TD : AI
PSB : AI | 3 | 0 | 2 | | 03 | 50 | 50 | 100 | 4 | | 3 | PCC | BAI703 | Data Security & Privacy | TD : AI
PSB : AI | 4 | 0 | 0 | | 03 | 50 | 50 | 100 | 4 | | 4 | PEC | BAI714x | Professional Elective Course | TD : AI
PSB : AI | 3 | 0 | 0 | | 03 | 50 | 50 | 100 | 3 | | 5 | OEC | BAI755x | Open Elective Course | TD : AI
PSB : AI | 3 | 0 | 0 | | 01 | 50 | 50 | 100 | 3 | | 6 | PROJ | BAI786 | Major Project Phase-II | TD : AI
PSB : AI | 0 | 0 | 12 | | 03 | 100 | 100 | 200 | 6 | | | | | | | | | | | | 400 | 300 | 700 | 24 | #### **Professional Elective Course** | BAI714A | IOT Analytics | BAI714C | Data Engineering & MLOps | |---------|----------------------------|---------|--------------------------| | BAI714B | Business Analytics | BAI714D | Big Data Analytics | | | Open Elective | Course | | | BAI755A | Introduction to DBMS | BAI755C | Software Engineering | | BAI755B | Introduction to Algorithms | BAI755D | | **PCC**: Professional Core Course, **PCCL**: Professional Core Course laboratory, **PEC**: Professional Elective Course, **OEC**: Open Elective Course PR: Project Work, **L**: Lecture, **T**: Tutorial, **P**: Practical **S=SDA**: Skill Development Activity, **CIE**: Continuous Internal Evaluation, **SEE**: Semester End Evaluation. **TD-** Teaching Department, **PSB**: Paper Setting department, **OEC**: Open Elective Course, **PEC**: Professional Elective Course. **PROJ**: Project work Note: VII and VIII semesters of IV years of the program - (1) Institutions can swap the VII and VIII Semester Schemes of Teaching and Examinations to accommodate research internships/ industry internships after the VI semester. - (2) Credits earned for the courses of VII and VIII Semester Scheme of Teaching and Examinations shall be counted against the corresponding semesters whether the VII or VIII semesters is completed during the beginning of the IV year or the later part of IV years of the program. **Professional Elective Courses (PEC):** A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in the Engineering and Technology curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of engineering. Each group will provide an option to select one course. The minimum number of students' strengths for offering professional electives is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10. ### **Open Elective Courses:** Students belonging to a particular stream of Engineering and Technology are not entitled to the open electives offered by their parent Department. However, they can opt for an elective offered by other Departments, provided they satisfy the prerequisite condition if any. Registration to open electives shall be documented under the guidance of the Program Coordinator/ Advisor/Mentor. The minimum numbers of students' strength for offering Open Elective Course is 10. However, this condition shall not be applicable to class where the admission to the program is less than 10. # PROJECT WORK (21AIP75): The objective of the Project work is - (i) To encourage independent learning and the innovative attitude of the students. - (ii) To develop interactive attitude, communication skills, organization, time management, and presentation skills. - (iii) To impart flexibility and adaptability. - (iv) To inspire team working. - (v) To expand intellectual capacity, credibility, judgment and intuition. - (vi) To adhere to punctuality, setting and meeting deadlines. - (vii) To install responsibilities to oneself and others. - (viii)To train students to present the topic of project work in a seminar without any fear, face the audience confidently, enhance communication skills, involve in group discussion to present and exchange ideas. # **CIE procedure for Project Work:** (1) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide. The CIE marks awarded for the project work, shall be based on the evaluation of the project work Report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates. (2) Interdisciplinary: Continuous Internal Evaluation shall be group-wise at the college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable. The CIE marks awarded for the project work, shall be based on the
evaluation of project work Report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates. **SEE procedure for Project Work:** SEE for project work will be conducted by the two examiners appointed by the University. The SEE marks awarded for the project work shall be based on the evaluation of project work Report, project presentation skill, and question and answer session in the ratio 50:25:25. #### VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI **B.E. in Artificial Intelligence and Machine Learning** # **Scheme of Teaching and Examinations2022** Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023-24) | | Course and
Course Code | | Course Title | | Teaching Teaching Hours / Wee | | | ek | Examination | | | | | |-----------|---------------------------|---------|---|----------|-------------------------------|------------------------------|---------------------------------------|-----|----------------------------------|------------------|------------------|--------------------|------------------------| | SI.
No | | | | | The
ory
Lect
ure | T
u
t
o
ri
al | Prac
tical
/
Dra
win
g | SDA | Dur
atio
n in
hou
rs | CIE
Mar
ks | SEE
Mark
s | Total
Mark
s | C
r
e
d
it | | | | | | | L | Т | Р | S | | | | | | | 1 | PEC | BAI801x | Professional Elective (Online Courses) Only through NPTEL | PSB : AI | 3 | 0 | 0 | | 03 | 50 | 50 | 100 | 3 | | 2 | OEC | BAI802x | Open Elective (Online Courses) Only through NPTEL | PSB : AI | 3 | 0 | 0 | | 01 | 50 | 50 | 100 | 3 | | 3 | INT | BAI803 | Internship (Industry/Research) (14 - 20 weeks) | | 0 | 0 | 12 | | 03 | 100 | 100 | 200 | 10 | | | | | | | | | | | | 200 | 200 | 400 | 16 | Professional Elective Course (Online courses) BAI801A BOS will publish courses based on the availability BAI801C BAI801B BAI801D Open Elective Courses (Online Courses) BAI802A BOS will publish courses based on the availability BAI802C BAI802B BAI802D L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. TD- Teaching Department, PSB: Paper Setting department, OEC: Open Elective Course, PEC: Professional Elective Course. PROJ: Project work, INT: Industry Internship / Research Internship / Rural Internship Note: VII and VIII semesters of IV years of the program **Swapping Facility** - Institutions can swap VII and VIII Semester Scheme of Teaching and Examinations to accommodate **research internships/ industry internships/Rural Internship** after the VI semester. - Credits earned for the courses of VII and VIII Semester Scheme of Teaching and Examinations shall be counted against the corresponding semesters whether VII or VIII semester is completed during the beginning of IV year or later part of IV year of the program. - Note: For BAI801x and BAI802x courses BOS will announce list of courses in 6th, 7th & 8th Sem. Students can register in any of the semester to earn the credits in 8th Sem. #### **Elucidation:** At the beginning of IV years of the program i.e., after VI semester, VII semester classwork and VIII semester **Research Internship / Industrial Internship / Rural or Internship** Research/Industrial /Rural Internship shall be carried out at an Industry, NGO, MSME, Innovation center, Incubation center, Start-up, center of Excellence (CoE), Study Centre established in the parent institute and /or at reputed research organizations/institutes. The mandatory Research internship /Industry internship / Rural Internship is for 14 to 20 weeks. The internship shall be considered as a head of passing and shall be considered for the award of a degree. Those, who do not take up/complete the internship shall be declared to fail and shall have to complete it during the subsequent University examination after satisfying the internship requirements. **Research internship:** A research internship is intended to offer the flavor of current research going on in the research field. It helps students get familiarized with the field and imparts the skill required for carrying out research. **Industry internship:** Is an extended period of work experience undertaken by students to supplement their degree for professional development. It also helps them learn to overcome unexpected obstacles and successfully navigate organizations, perspectives, and cultures. Dealing with contingencies helps students recognize, appreciate, and adapt to organizational realities by tempering their knowledge with practical constraints. **Rural Internship:** Rural development internship is an initiative of Unnat Bharat Abhiyan Cell, RGIT in association with AICTE to involve students of all departments studying in different academic years for exploring various opportunities in techno-social fields, to connect and work with Rural India for their upliftment. The faculty coordinator or mentor has to monitor the student's internship progress and interact with them to guide for the successful completion of the internship. The students are permitted to carry out the internship anywhere in India or abroad. University shall not bear any expenses incurred in respect of the internship. With the consent of the internal guide and Principal of the Institution, students shall be allowed to carry out the internship at their hometown (within or outside the state or abroad), provided favorable facilities are available for the internship and the student remains regularly in contact with the internal guide. University shall not bear any cost involved in carrying out the internship by students. However, students can receive any financial assistance extended by the organization. Professional Elective /Open Elective Course: These are ONLINE courses suggested by the respective Board of Studies. Details of these courses shall be made available for students on the VTU web portal. Please note: If any clarifications / suggestions please email to sbhvtuso@yahoo.com | Mathematics fo | Mathematics for Computer Science | | | |---------------------------------|-------------------------------------|-------------|-----| | Course Code | Course Code BCS301 | | | | Teaching Hours/Week (L: T:P: S) | 3:2:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 hours Theory + 20 Hours Tutorial | Total Marks | 100 | | Credits | 04 | Exam Hours | 3 | | Examination type (SEE) | Theory | | | # **Course objectives:** This course will enable the students to: - 1. To introduce the concept of random variables, probability distributions, specific discrete and continuous distributions with practical application in Computer Science Engineering and social life situations. - 2. To Provide the principles of statistical inferences and the basics of hypothesis testing with emphasis on some commonly encountered hypotheses. - 3. To Determine whether an input has a statistically significant effect on the system's response through ANOVA testing. # **Teaching-Learning Process** # **Pedagogy (General Instructions):** Teachers can use the following strategies to accelerate the attainment of the various course outcomes. - 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied Mathematical skills. - 2. State the need for Mathematics with Engineering Studies and Provide real-life examples. - 3. Support and guide the students for self–study. - 4. You will assign homework, grading assignments and quizzes, and documenting students' progress. - 5. Encourage the students to group learning to improve their creative and analytical skills. - 6. Show short related video lectures in the following ways: - As an introduction to new topics (pre-lecture activity). - As a revision of topics (post-lecture activity). - As additional examples (post-lecture activity). - As an additional material of challenging topics (pre-and post-lecture activity). - As a model solution of some exercises (post-lecture activity). ## **Module-1: Probability Distributions** **Probability Distributions**: Review of basic probability theory. Random variables (discrete and continuous), probability mass and density functions. Mathematical expectation, mean and variance. Binomial, Poisson and normal distributions- problems (derivations for mean and standard deviation for Binomial and Poisson distributions only)-Illustrative examples. Exponential distribution. (12 #### Hours) (RBT Levels: L1, L2 and L3) | Pedagogy | Chalk and Board, Problem-based learning | |----------|--| | Modu | lle-2: Joint probability distribution & Markov Chain | 2 Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance and correlation. Markov Chain: Introduction to Stochastic Process, Probability Vectors, Stochastic matrices, Regular stochastic matrices, Markov chains, Higher transition probabilities, Stationary distribution of Regular Markov chains and absorbing states. (12 (RBT Levels: L1, L2 and L3) Chalk and Board, Problem-based learning **Pedagogy Module-3: Statistical Inference 1** Introduction, sampling distribution, standard error, testing of hypothesis, levels of significance, test of significances, confidence limits, simple sampling of attributes, test of significance for large samples, comparison of large samples. (12 (RBT Levels: L1, L2 and L3) Chalk and Board, Problem-based learning **Pedagogy Module-4: Statistical Inference 2** Sampling variables, central limit theorem and confidences limit for unknown mean. Test of Significance for means of two small samples, students 't' distribution, Chi-square distribution as a test of goodness of
fit. F-Distribution. (12 Hours) (RBT Levels: L1, L2 and L3) Chalk and Board, Problem-based learning **Pedagogy** # Module-5: Design of Experiments & ANOVA Principles of experimentation in design, Analysis of completely randomized design, randomized block design. The ANOVA Technique, Basic Principle of ANOVA, One-way ANOVA, Two-way ANOVA, Latin-square Design, and Analysis of Co-Variance. (12 Hours) (RBT Levels: L1, L2 and L3) **Pedagogy** Chalk and Board, Problem-based learning # Course outcome (Course Skill Set) At the end of the course, the student will be able to: - 1. Explain the basic concepts of probability, random variables, probability distribution - 2. Apply suitable probability distribution models for the given scenario. - 3. Apply the notion of a discrete-time Markov chain and n-step transition probabilities to solve the given problem - 4. Use statistical methodology and tools in the engineering problem-solving process. - 5. Compute the confidence intervals for the mean of the population. - 6. Apply the ANOVA test related to engineering problems. #### **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ## **Continuous Internal Evaluation:** • For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ### **Semester-End Examination:** Theory SEE will be conducted by the University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. Marks scored shall be proportionally reduced to 50 marks # **Suggested Learning Resources:** #### **Textbooks:** - **1. Ronald E. Walpole, Raymond H Myers, Sharon L Myers & Keying Ye** "Probability & Statistics for Engineers & Scientists", Pearson Education, 9th edition, 2017. - 2. Peter Bruce, Andrew Bruce & Peter Gedeck "Practical Statistics for Data Scientists" O'Reilly Media, Inc., 2nd edition 2020. Reference Books: (Name of the author/Title of the Book/ Name of the publisher/Edition and Year) - 1. **Erwin Kreyszig**, "Advanced Engineering Mathematics", John Wiley & Sons, 9th Edition, 2006. - 2. **B. S. Grewal** "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021. - 3. **G Haribaskaran** "Probability, Queuing Theory & Reliability Engineering", Laxmi Publication, Latest Edition, 2006 - 4. **Irwin Miller & Marylees Miller,** John E. Freund's "Mathematical Statistics with Applications" Pearson. Dorling Kindersley Pvt. Ltd. India, 8th edition, 2014. - 5. **S C Gupta and V K Kapoor**, "Fundamentals of Mathematical Statistics", S Chand and Company, Latest edition. - 6. **Robert V. Hogg, Joseph W. McKean & Allen T. Craig**. "Introduction to Mathematical Statistics", Pearson Education 7th edition, 2013. - 7. **Jim Pitman**. Probability, Springer-Verlag, 1993. - 8. **Sheldon M. Ross,** "Introduction to Probability Models" 11th edition. Elsevier, 2014. - 9. **A. M. Yaglom and I. M. Yaglom**, "Probability and Information". D. Reidel Publishing Company. Distributed by Hindustan Publishing Corporation (India) Delhi, 1983. - 10. **P. G. Hoel, S. C. Port and C. J. Stone**, "Introduction to Probability Theory", Universal Book Stall, (Reprint), 2003. - 11. **S. Ross**, "A First Course in Probability", Pearson Education India, 6th Ed., 2002. - 12. W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, Wiley, 3rd Ed., 1968. - 13. **N.P. Bali and Manish Goyal**, A Textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010. - 14. **Veerarajan T**, Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010 # Web links and Video Lectures (e-Resources): http://nptel.ac.in/courses.php?disciplineID=111 http://www.class-central.com/subject/math(MOOCs) http://academicearth.org/ http://www.bookstreet.in. VTU EDUSAT PROGRAMME – 20 VTU e-Shikshana Program # Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning - Programming Assignment - Seminars | Digital Design and | Semester | 3 | | |--------------------------------|--|-------------|-----| | Course Code | BCS302 | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 3:0:2:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 hours Theory + 20 Hours of Practicals | Total Marks | 100 | | Credits | 04 | Exam Hours | 3 | | Examination nature (SEE) | Theory | _ | | #### Course objectives: - To demonstrate the functionalities of binary logic system - To explain the working of combinational and sequential logic system - To realize the basic structure of computer system - To illustrate the working of I/O operations and processing unit #### **Teaching-Learning Process (General Instructions)** These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes. - 1. Chalk and Talk - 2. Live Demo with experiments - 3. Power point presentation MODULE-1 8 Hr **Introduction to Digital Design:** Binary Logic, Basic Theorems And Properties Of Boolean Algebra, Boolean Functions, Digital Logic Gates, Introduction, The Map Method, Four-Variable Map, Don't-Care Conditions, NAND and NOR Implementation, Other Hardware Description Language – Verilog Model of a simple circuit. # Text book 1: 1.9, 2.4, 2.5, 2.8, 3.1, 3.2, 3.3, 3.5, 3.6, 3.9 ### MODULE-2 8 Hr **Combinational Logic**: Introduction, Combinational Circuits, Design Procedure, Binary Adder- Subtractor, Decoders, Encoders, Multiplexers. HDL Models of Combinational Circuits – Adder, Multiplexer, Encoder. **Sequential Logic**: Introduction, Sequential Circuits, Storage Elements: Latches, Flip-Flops. Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9, 4.10, 4.11, 4.12, 5.1, 5.2, 5.3, 5.4. #### MODULE-3 8 Hr **Basic Structure of Computers:** Functional Units, Basic Operational Concepts, Bus structure, Performance – Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement. **Machine Instructions and Programs:** Memory Location and Addresses, Memory Operations, Instruction and Instruction sequencing, Addressing Modes. #### Text book 2: 1.2, 1.3, 1.4, 1.6, 2.2, 2.3, 2.4, 2.5 ### MODULE-4 8 Hr **Input/output Organization:** Accessing I/O Devices, Interrupts – Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Direct Memory Access: Bus Arbitration, Speed, size and Cost of memory systems. Cache Memories – Mapping Functions. #### Text book 2: 4.1, 4.2.1, 4.2.2, 4.2.3, 4.4, 5.4, 5.5.1 #### MODULE-5 8 Hr **Basic Processing Unit:** Some Fundamental Concepts: Register Transfers, Performing ALU operations, fetching a word from Memory, Storing a word in memory. Execution of a Complete Instruction. **Pipelining:** Basic concepts, Role of Cache memory, Pipeline Performance. Text book 2: 7.1, 7.2, 8.1 #### PRACTICAL COMPONENT OF IPCC | Sl.N | Experiments | |------|--| | 0 | Simulation packages preferred: Multisim, Modelsim, PSpice or any other relevant | | 1 | Given a 4-variable logic expression, simplify it using appropriate technique and simulate the same | | | using basic gates. | | 2 | Design a 4 bit full adder and subtractor and simulate the same using basic gates. | | 3 | Design Verilog HDL to implement simple circuits using structural, Data flow and Behavioural model. | | 4 | Design Verilog HDL to implement Binary Adder-Subtractor – Half and Full Adder, Half and Full | | | Subtractor. | | 5 | Design Verilog HDL to implement Decimal adder. | | 6 | Design Verilog program to implement Different types of multiplexer like 2:1, 4:1 and 8:1. | | 7 | Design Verilog program to implement types of De-Multiplexer. | | 8 | Design Verilog program for implementing various types of Flip-Flops such as SR, JK and D. | | | | ### **Course outcomes (Course Skill Set):** At the end of the course, the student will be able to: - CO1: Apply the K–Map techniques to simplify various Boolean expressions. - CO2: Design different types of combinational and sequential circuits along with Verilog programs. - CO3: Describe the fundamentals of machine instructions, addressing modes and Processor performance. - CO4: Explain the approaches involved in achieving communication between processor and I/O devices. - CO5: Analyze internal Organization of Memory and Impact of cache/Pipelining on Processor Performance. ### **Assessment Details (both CIE and SEE)** The
weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### CIE for the theory component of the IPCC (maximum marks 50) - IPCC means practical portion integrated with the theory of the course. - CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**. - 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus. - Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**). - The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC. ### CIE for the practical component of the IPCC - **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions. - On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day. - The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**. - The laboratory test **(duration 02/03 hours)** after completion of all the experiments shall be conducted for 50 marks and scaled down to **10 marks**. - Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 25 marks. - The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. ### **SEE for IPCC** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours) - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored by the student shall be proportionally scaled down to 50 Marks The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component. ## **Suggested Learning Resources:** #### **Books** - 1. M. Morris Mano & Michael D. Ciletti, Digital Design With an Introduction to Verilog Design, 5e, Pearson Education. - 2. Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer Organization, 5th Edition, Tata McGraw Hill. ## Web links and Video Lectures (e-Resources): https://cse11-iiith.vlabs.ac.in/ # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning Assign the group task to Design the various types of counters and display the output accordingly **Assessment Methods** - Lab Assessment (25 Marks) - GATE Based Aptitude Test | OPERAT | Semester | 3 | | |--------------------------------|---------------------------------------|-------------|-----| | Course Code | BCS303 | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 3:0:2:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 hours Theory + 20 hours practicals | Total Marks | 100 | | Credits | 04 | Exam Hours | 3 | | Examination nature (SEE) | Theory | | | ### **Course objectives:** - To Demonstrate the need for OS and different types of OS - To discuss suitable techniques for management of different resources - To demonstrate different APIs/Commands related to processor, memory, storage and file system management. ### **Teaching-Learning Process (General Instructions)** Teachers can use the following strategies to accelerate the attainment of the various course outcomes. - 1. Lecturer methods (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it. - 5. Role play for process scheduling. - 6. Demonstrate the installation of any one Linux OS on VMware/Virtual Box MODULE-1 8 Hours **Introduction to operating systems, System structures:** What operating systems do; Computer System organization; Computer System architecture; Operating System structure; Operating System operations; Process management; Memory management; Storage management; Protection and Security; Distributed system; Special-purpose systems; Computing environments. **Operating System Services:** User - Operating System interface; System calls; Types of system calls; System programs; Operating system design and implementation; Operating System structure; Virtual machines; Operating System debugging, Operating System generation; System boot. **Textbook 1: Chapter – 1 (1.1-1.12), 2 (2.2-2.11)** #### MODULE-2 8 Hours **Process Management:** Process concept; Process scheduling; Operations on processes; Inter process communication Multi-threaded Programming: Overview; Multithreading models; Thread Libraries; Threading issues. **Process Scheduling**: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Thread scheduling; Multiple-processor scheduling, Textbook 1: Chapter – 3 (3.1-3.4), 4 (4.1-4.4), 5 (5.1 -5.5) MODULE-3 8 Hours **Process Synchronization:** Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; **Deadlocks:** System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock. Textbook 1: Chapter -6 (6.1-6.6), 7 (7.1 -7.7) MODULE-4 8 Hours **Memory Management:** Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation. **Virtual Memory Management:** Background; Demand paging; Copy-on-write; Page replacement; Allocation of frames; Thrashing. **Textbook 1: Chapter -8 (8.1-8.6), 9 (9.1-9.6)** MODULE-5 8 Hours **File System, Implementation of File System:** File system: File concept; Access methods; Directory and Disk structure; File system mounting; File sharing; **Implementing File system:** File system structure; File system implementation; Directory implementation; Allocation methods; Free space management. **Secondary Storage Structure, Protection:** Mass storage structures; Disk structure; Disk attachment; Disk scheduling; Disk management; **Protection**: Goals of protection, Principles of protection, Domain of protection, Access matrix. Textbook 1: Chapter – 10 (10.1-10.5) ,11 (11.1-11.5),12 (12.1-12.5), 14 (14.1-14.4) #### PRACTICAL COMPONENT OF IPCC(May cover all / major modules) | Sl.N | Experiments | |------|--| | О | | | 1 | Develop a c program to implement the Process system calls (fork (), exec(), wait(), create process, terminate process) | | 2 | Simulate the following CPU scheduling algorithms to find turnaround time and waiting time a) FCFS b) SJF c) Round Robin d) Priority. | | 3 | Develop a C program to simulate producer-consumer problem using semaphores. | | 4 | Develop a C program which demonstrates interprocess communication between a reader process and a writer process. Use mkfifo, open, read, write and close APIs in your program. | | 5 | Develop a C program to simulate Bankers Algorithm for DeadLock Avoidance. | | 6 | Develop a C program to simulate the following contiguous memory allocation Techniques: a) Worst fit b) Best fit c) First fit. | | 7 | Develop a C program to simulate page replacement algorithms: | | | a) FIFO b) LRU | | 8 | Simulate following File Organization Techniques | | | a) Single level directory b) Two level directory | | 9 | Develop a C program to simulate the Linked file allocation strategies. | | 10 | Develop a C program to simulate SCAN disk scheduling algorithm. | | ~ | (C) CIMCO | #### **Course outcomes (Course Skill Set):** At the end of the course, the student will be able to: - CO 1. Explain the structure and functionality of operating system - CO 2. Apply appropriate CPU scheduling algorithms for the given problem. - CO 3. Analyse the various techniques for process synchronization and deadlock handling. - CO 4. Apply the various techniques for memory management - CO 5. Explain file and secondary storage management strategies. - CO 6. Describe the need for information protection mechanisms # Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of
the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ## CIE for the theory component of the IPCC (maximum marks 50) - IPCC means practical portion integrated with the theory of the course. - CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**. - 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 22OB4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus. - Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**). - The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC. ## CIE for the practical component of the IPCC - 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for the test to be conducted after the completion of all the laboratory sessions. - On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day. - The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks. - The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks. - Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 25 marks. - The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. ### **SEE for IPCC** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**) - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scoredby the student shall be proportionally scaled down to 50 Marks The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component. # **Suggested Learning Resources:** ### **Textbooks** 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 8th edition, Wiley-India, 2015 #### **Reference Books** - 1. Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th Edition - 2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill, 2013. - 3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition, PHI(EEE), 2014. - 4. William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pearson. ### Web links and Video Lectures (e-Resources): 1. https://youtu.be/mXw9ruZaxzQ - 2. https://youtu.be/vBURTt97EkA - 3. https://www.youtube.com/watch?v=783KAB-tuE4&list=PLIemF3uozcAKTgsCIj82voMK3TMR0YE_f - 4. https://www.youtube.com/watch?v=3-ITLMMeeXY&list=PL3pGy4HtqwD0n7bQfHjPnsWzkeRn6mkO # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - Assessment Methods - o Case Study on Unix Based Systems (10 Marks) - o Lab Assessment (25 Marks) | DATA STRUCTURE | DATA STRUCTURES AND APPLICATIONS | | | |---------------------------------|----------------------------------|-------------|-----| | Course Code | BCS304 | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 3:0:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 3 | | Examination type (SEE) | The | ory | • | ## **Course objectives:** - CLO 1. To explain fundamentals of data structures and their applications. - CLO 2. To illustrate representation of Different data structures such as Stack, Queues, Linked Lists, Trees and Graphs. - CLO 3. To Design and Develop Solutions to problems using Linear Data Structures - CLO 4. To discuss applications of Nonlinear Data Structures in problem solving. - CLO 5. To introduce advanced Data structure concepts such as Hashing and Optimal Binary Search Trees #### **Teaching-Learning Process (General Instructions)** Teachers can use following strategies to accelerate the attainment of the various course outcomes. - 1. Chalk and Talk with Black Board - 2. ICT based Teaching - 3. Demonstration based Teaching Module-1 8Hours **INTRODUCTION TO DATA STRUCTURES:** Data Structures, Classifications (Primitive & Non-Primitive), Data structure Operations Review of pointers and dynamic Memory Allocation, **ARRAYS and STRUCTURES:** Arrays, Dynamic Allocated Arrays, Structures and Unions, Polynomials, Sparse Matrices, representation of Multidimensional Arrays, Strings **STACKS:** Stacks, Stacks Using Dynamic Arrays, Evaluation and conversion of Expressions Text Book: Chapter-1:1.2 Chapter-2: 2.1 to 2.7 Chapter-3: 3.1,3.2,3.6 Reference Book 1: 1.1 to 1.4 Module-2 8Hours **QUEUES:** Queues, Circular Queues, Using Dynamic Arrays, Multiple Stacks and queues. **LINKED LISTS:** Singly Linked, Lists and Chains, Representing Chains in C, Linked Stacks and Queues, Polynomials Text Book: Chapter-3: 3.3, 3.4, 3.7 Chapter-4: 4.1 to 4.4 Module-3 8Hours **LINKED LISTS:** Additional List Operations, Sparse Matrices, Doubly Linked List. **TREES:** Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees. Text Book: Chapter-4: 4.5,4.7,4.8 Chapter-5: 5.1 to 5.3, 5.5 Module-4 8Hours **TREES**(Cont..): Binary Search trees, Selection Trees, Forests, Representation of Disjoint sets, Counting Binary Trees, **GRAPHS:** The Graph Abstract Data Types, Elementary Graph Operations Text Book: Chapter-5: 5.7 to 5.11 Chapter-6: 6.1, 6.2 Module-5 8Hours **HASHING:** Introduction, Static Hashing, Dynamic Hashing **PRIORITY QUEUES:** Single and double ended Priority Queues, Leftist Trees INTRODUCTION TO EFFICIENT BINARY SEARCH TREES: Optimal Binary Search Trees Text Book: Chapter 8: 8.1 to 8.3 Chapter 9: 9.1, 9.2 Chapter 10: 10.1 # Course outcome (Course Skill Set) At the end of the course the student will be able to: - CO 1. Explain different data structures and their applications. - CO 2. Apply Arrays, Stacks and Queue data structures to solve the given problems. - CO 3. Use the concept of linked list in problem solving. - CO 4. Develop solutions using trees and graphs to model the real-world problem. - CO 5. Explain the advanced Data Structures concepts such as Hashing Techniques and Optimal Binary Search Trees. ## **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. #### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. #### **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally reduced to 50 marks ### **Suggested Learning Resources:** #### Textbook: 1. Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, Fundamentals of Data Structures in C, 2nd Ed, Universities Press, 2014 ### **Reference Books:** - 1. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014. - 2. Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage Learning, 2014. - 3. Reema Thareja, Data Structures using C, 3rd Ed,
Oxford press, 2012. - 4. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, 2nd Ed, McGraw Hill, 2013 - 5. A M Tenenbaum, Data Structures using C, PHI, 1989 - 6. Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996. # Web links and Video Lectures (e-Resources): - http://elearning.vtu.ac.in/econtent/courses/video/CSE/06CS35.html - https://nptel.ac.in/courses/106/105/106105171/ - http://www.nptelvideos.in/2012/11/data-structures-and-algorithms.html - https://www.youtube.com/watch?v=3Xo6P_V-qns&t=201s - https://ds2-iiith.vlabs.ac.in/exp/selection-sort/index.html - https://nptel.ac.in/courses/106/102/106102064/ - https://ds1-iiith.vlabs.ac.in/exp/stacks-queues/index.html - https://ds1-iiith.vlabs.ac.in/exp/linked-list/basics/overview.html - https://ds1-iiith.vlabs.ac.in/List%20of%20experiments.html - https://ds1-iiith.vlabs.ac.in/exp/tree-traversal/index.html - https://ds1-iiith.vlabs.ac.in/exp/tree-traversal/depth-first-traversal/dft-practice.html - https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013501595428077568125 59/overview ### Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - Role Play - Flipped classroom - Assessment Methods for 25 Marks (opt two Learning Activities) - Case Study - o Programming Assignment - Gate Based Aptitude Test - MOOC Assignment for selected Module | | DATA STRUC'
SEM | TURES LABO
IESTER – III | DRATORY | | |-------------|---|--|---|--| | Course Co | | BCSL305 | CIE Marks | 50 | | | of Contact Hours/Week | 0:0:2 | SEE Marks | 50 | | | nber of Lab Contact Hours | 28 | Exam Hours | 03 | | 10tai i tai | | Credits – 1 | L'Adm Hours | 03 | | Course Le | earning Objectives: | | | | | | atory course enables students to get pr | actical experien | nce in design, develop | implement, analyze | | | ation/testing of | 1 | <i>U</i> , 1 | | | • Dy | ynamic memory management | | | | | • Li | near data structures and their applicati | ons such as sta | cks, queues and lists | | | | | | - | | | • No | on-Linear data structures and their app | olications such a | as trees and graphs | | | | | | | | | 75 1 11 | (10) | | | | | Description | ons (if any): | | | | | • In | plement all the programs in "C" Programs | gramming Lang | guage and Linux OS. | | | Programs | | | | | | 1. | Develop a Program in C for the follo a) Declare a calendar as an arra 7 days of a week. Each Elen field is the name of the Day date of the Day (A integer | y of 7 elements
nent of the array
(A dynamically), the third fie | y is a structure having
ly allocated String), T
ld is the description | three fields. The first he second field is the | | | b) Write functions create(), reafrom the keyboard and to pr | d() and display | y(); to create the cale | | | | | | | | | 2. | Develop a Program in C for the fol | | | Christa (DED) | | | a. Read a main String (STR), | • | | | | | b. Perform Pattern Matching STR with REP if PAT exist exist in STR | | | | | | Support the program with function | ns for each of | the above operations | s. Don't use Built-in | | | functions. | | | | | 3. | Develop a menu driven Program in | | | ACK of Integers | | | (Array Implementation of Stack wit | | | _ | | | a. Push an Element on to Stac | k | | | | | b. Pop an Element from Stack | | | | | | c. Demonstrate how Stack car | be used to che | ck Palindrome | | | | d. Demonstrate Overflow and | Underflow situ | ations on Stack | | | | e. Display the status of Stack | | | | | 1 | f Evit | | | | Support the program with appropriate functions for each of the above operations | 4. | Develop a Program in C for converting an Infix Expression to Postfix Expression. Program | | | | | | |----|---|--|--|--|--|--| | | should support for both parenthesized and free parenthesized | | | | | | | | expressions with the operators: +, -, *, /, % (Remainder), ^ (Power) and alphanumeric | | | | | | | | operands. | | | | | | | 5. | Develop a Program in C for the following Stack Applications | | | | | | | | a. Evaluation of Suffix expression with single digit operands and operators: +, -, *, /, %, | | | | | | | | ^ | | | | | | | | b. Solving Tower of Hanoi problem with n disks | | | | | | | 6. | Develop a menu driven Program in C for the following operations on Circular QUEUE of | |-----|---| | | Characters (Array Implementation of Queue with maximum size MAX) | | | a. Insert an Element on to Circular QUEUE | | | b. Delete an Element from Circular QUEUE | | | c. Demonstrate Overflow and Underflow situations on Circular QUEUE | | | d. Display the status of Circular QUEUE | | | e. Exit | | | Support the program with appropriate functions for each of the above operations | | 7. | Develop a menu driven Program in C for the following operations on Singly Linked List | | | (SLL) of Student Data with the fields: USN, Name, Programme, Sem, | | | PhNo | | | a. Create a SLL of N Students Data by using front insertion. | | | b. Display the status of SLL and count the number of nodes in it | | | c. Perform Insertion / Deletion at End of SLL | | | d. Perform Insertion / Deletion at Front of SLL(Demonstration of stack) | | | e. Exit | | 8. | Develop a menu driven Program in C for the following operations on Doubly Linked List | | | (DLL) of Employee Data with the fields: SSN, Name, Dept, Designation, | | | Sal, PhNo | | | a. Create a DLL of N Employees Data by using <i>end insertion</i> . | | | b. Display the status of DLL and count the number of nodes in it | | | c. Perform Insertion and Deletion at End of DLL | | | d. Perform Insertion and Deletion at Front of DLL | | | e. Demonstrate how this DLL can be used as Double Ended Queue. | | | f. Exit | | 9. | Develop a Program in C for the following operations on Singly Circular Linked List (SCLL) | | | with header nodes | | | a. Represent and Evaluate a Polynomial $P(x,y,z) = 6x^2y^2z-4yz^5+3x^3yz+2xy^5z-2xyz^3$ | | | b. Find the sum of two polynomials $POLY1(x,y,z)$ and $POLY2(x,y,z)$ and store the | | | result in POLYSUM(x,y,z) | | | Support the program with appropriate functions for each of the above operations | | 10. | Develop a menu driven Program in C for the following operations on Binary Search Tree | | | (BST) of Integers . | | | a. Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2 | | | b. Traverse the BST in Inorder, Preorder and Post Order | | | c. Search the BST for a given element (KEY) and report the appropriate message | | | d. Exit | | 11. | Develop a Program in C for the following operations on Graph(G) of Cities | | | a. Create a Graph of N cities using Adjacency Matrix. | | | b. Print all the nodes reachable from a given starting node in a digraph using DFS/BFS | | | method | | | | Given a File of N employee records with a set K of Keys (4-digit) which uniquely determine the records in file F. Assume that file F is maintained in memory by a Hash Table (HT) of m memory locations with L as the set of memory addresses (2-digit) of locations in HT. Let the keys in K and addresses in L are Integers. Develop a Program in C that uses Hash function H: K →L as H(K)=K mod m (remainder method), and implement hashing technique to map a given key K to the address space L. Resolve the collision (if any) using **Laboratory Outcomes**: The student should be able to: - Analyze various linear and non-linear data structures - Demonstrate the working nature of different types of data structures and their applications - Use appropriate searching and sorting algorithms for the give scenario. - Apply the appropriate data structure for solving real world problems #### **Conduct of Practical Examination:** linear probing. - Experiment distribution - o For laboratories having only one part: Students are allowed to pick one experiment from the lot with equal opportunity. - o For laboratories having PART A and PART B: Students are allowed to pick one experiment from PART A and one experiment from PART B, with equal opportunity. - Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only. - Marks Distribution (*Need to change in accordance with university regulations*) - c) For laboratories having only one part Procedure + Execution + Viva-Voce: 15+70+15 = 100 Marks - d) For laboratories having PART A and PART B - i. Part A Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks - ii. Part B Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks | Object Orient | Object Oriented Programming with JAVA | | | 3 | |-------------------------------|---------------------------------------|--|-------------|---------| | Course Code | | BCS306A | CIE Marks | 50 | | Teaching Hours/ | Week (L: T:P: S) | 2:0:2 | SEE Marks | 50 | | Total Hours of Pe | edagogy | 28 Hours of Theory + 20 Hours of Practical | Total Marks | 10
0 | | Credits | | 03 | Exam Hours | 03 | | Examination type (SEE) Theory | | | | | Note - Students who have undergone "Basics of Java Programming-BPLCK105C/205C" in first year are not eligible to opt this course ### Course objectives: - To learn primitive constructs JAVA programming language. - To understand Object Oriented Programming Features of JAVA. - To gain knowledge on: packages, multithreaded programing and exceptions. #### **Teaching-Learning Process (General Instructions)** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes
and make Teaching –Learning more effective - 1. Use Online Java Compiler IDE: https://www.jdoodle.com/online-java-compiler/ or any other. - 2. Demonstration of programing examples. - 3. Chalk and board, power point presentations - 4. Online material (Tutorials) and video lectures. #### Module-1 **An Overview of Java:** Object-Oriented Programming (Two Paradigms, Abstraction, The Three OOP Principles), Using Blocks of Code, Lexical Issues (Whitespace, Identifiers, Literals, Comments, Separators, The Java Keywords). **Data Types, Variables, and Arrays:** The Primitive Types (Integers, Floating-Point Types, Characters, Booleans), Variables, Type Conversion and Casting, Automatic Type Promotion in Expressions, Arrays, Introducing Type Inference with Local Variables. **Operators:** Arithmetic Operators, Relational Operators, Boolean Logical Operators, The Assignment Operator, The ? Operator, Operator Precedence, Using Parentheses. **Control Statements:** Java's Selection Statements (if, The Traditional switch), Iteration Statements (while, do-while, for, The For-Each Version of the for Loop, Local Variable Type Inference in a for Loop, Nested Loops), Jump Statements (Using break, Using continue, return). Chapter 2, 3, 4, 5 #### Module-2 **Introducing Classes:** Class Fundamentals, Declaring Objects, Assigning Object Reference Variables, Introducing Methods, Constructors, The this Keyword, Garbage Collection. **Methods and Classes:** Overloading Methods, Objects as Parameters, Argument Passing, Returning Objects, Recursion, Access Control, Understanding static, Introducing final, Introducing Nested and Inner Classes. #### Chapter 6, 7 ### Module-3 **Inheritance:** Inheritance Basics, Using super, Creating a Multilevel Hierarchy, When Constructors Are Executed, Method Overriding, Dynamic Method Dispatch, Using Abstract Classes, Using final with Inheritance, Local Variable Type Inference and Inheritance, The Object Class. **Interfaces:** Interfaces, Default Interface Methods, Use static Methods in an Interface, Private Interface Methods. Chapter 8, 9 | | - | | |---|-----|-------| | м | odu | ıle-4 | Packages: Packages, Packages and Member Access, Importing Packages. **Exceptions:** Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Exceptions, Creating Your Own Exception Subclasses, Chained Exceptions. #### Chapter 9, 10 #### Module-5 **Multithreaded Programming:** The Java Thread Model, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive() and join(), Thread Priorities, Synchronization, Interthread Communication, Suspending, Resuming, and Stopping Threads, Obtaining a Thread's State. **Enumerations, Type Wrappers and Autoboxing:** Enumerations (Enumeration Fundamentals, The values() and valueOf() Methods), Type Wrappers (Character, Boolean, The Numeric Type Wrappers), Autoboxing (Autoboxing and Methods, Autoboxing/Unboxing Occurs in Expressions, Autoboxing/Unboxing Boolean and Character Values). #### **Chapter 11, 12** #### Course outcome (Course Skill Set) At the end of the course, the student will be able to: - 1. Demonstrate proficiency in writing simple programs involving branching and looping structures. - 2. Design a class involving data members and methods for the given scenario. - 3. Apply the concepts of inheritance and interfaces in solving real world problems. - 4. Use the concept of packages and exception handling in solving complex problem - 5. Apply concepts of multithreading, autoboxing and enumerations in program development ### **Programming Experiments (Suggested and are not limited to)** - 1. Develop a JAVA program to add TWO matrices of suitable order N (The value of N should be read from command line arguments). - 2. Develop a stack class to hold a maximum of 10 integers with suitable methods. Develop a JAVA main method to illustrate Stack operations. - 3. A class called Employee, which models an employee with an ID, name and salary, is designed as shown in the following class diagram. The method raiseSalary (percent) increases the salary by the given percentage. Develop the Employee class and suitable main method for demonstration. - 4. A class called MyPoint, which models a 2D point with x and y coordinates, is designed as follows: - Two instance variables x (int) and y (int). - A default (or "no-arg") constructor that construct a point at the default location of (0, 0). - A overloaded constructor that constructs a point with the given x and y coordinates. - A method setXY() to set both x and y. - A method getXY() which returns the x and y in a 2-element int array. - A toString() method that returns a string description of the instance in the format "(x, y)". - A method called distance(int x, int y) that returns the distance from this point to another point at the given (x, y) coordinates - An overloaded distance(MyPoint another) that returns the distance from this point to the given MyPoint instance (called another) - Another overloaded distance() method that returns the distance from this point to the origin (0,0) Develop the code for the class MyPoint. Also develop a JAVA program (called TestMyPoint) to test all the methods defined in the class. - 5. Develop a JAVA program to create a class named shape. Create three sub classes namely: circle, triangle and square, each class has two member functions named draw () and erase (). Demonstrate - polymorphism concepts by developing suitable methods, defining member data and main program. - 6. Develop a JAVA program to create an abstract class Shape with abstract methods calculateArea() and calculatePerimeter(). Create subclasses Circle and Triangle that extend the Shape class and implement the respective methods to calculate the area and perimeter of each shape. - 7. Develop a JAVA program to create an interface Resizable with methods resizeWidth(int width) and resizeHeight(int height) that allow an object to be resized. Create a class Rectangle that implements the Resizable interface and implements the resize methods - 8. Develop a JAVA program to create an outer class with a function display. Create another class inside the outer class named inner with a function called display and call the two functions in the main class. - 9. Develop a JAVA program to raise a custom exception (user defined exception) for DivisionByZero using try, catch, throw and finally. - 10. Develop a JAVA program to create a package named mypack and import & implement it in a suitable class - 11. Write a program to illustrate creation of threads using runnable class. (start method start each of the newly created thread. Inside the run method there is sleep() for suspend the thread for 500 milliseconds). - 12. Develop a program to create a class MyThread in this class a constructor, call the base class constructor, using super and start the thread. The run method of the class starts after this. It can be observed that both main thread and created child thread are executed concurrently. #### **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### CIE for the theory component of the IPCC (maximum marks 50) - IPCC means practical portion integrated with the theory of the course. - CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**. - 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus. - Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**). - The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC. ### CIE for the practical component of the IPCC - **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions. - On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day. - The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**. - The laboratory test **(duration 02/03 hours)** after completion of all the experiments shall be conducted for 50 marks and scaled down to **10 marks**. - Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **25 marks**. - The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. #### **SEE for IPCC** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**) - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3
sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored by the student shall be proportionally scaled down to 50 Marks The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component. ### **Suggested Learning Resources:** #### **Textbook** 5 1. Java: The Complete Reference, Twelfth Edition, by Herbert Schildt, November 2021, McGraw-Hill, ISBN: 9781260463422 #### **Reference Books** - 1. Programming with Java, 6th Edition, by E Balagurusamy, Mar-2019, McGraw Hill Education, ISBN: 9789353162337. - 2. Thinking in Java, Fourth Edition, by Bruce Eckel, Prentice Hall, 2006 (https://sd.blackball.lv/library/thinking_in_java_4th_edition.pdf) ### Web links and Video Lectures (e-Resources): - Java Tutorial: https://www.geeksforgeeks.org/java/ - Introduction To Programming In Java (by Evan Jones, Adam Marcus and Eugene Wu): https://ocw.mit.edu/courses/6-092-introduction-to-programming-in-java-january-iap-2010/ - Java Tutorial: https://www.w3schools.com/java/ - Java Tutorial: https://www.javatpoint.com/java-tutorial ### Activity Based Learning (Suggested Activities)/ Practical Based learning - 1. Installation of Java (Refer: https://www.java.com/en/download/help/index_installing.html) - 2. Demonstration of online IDEs like geeksforgeeks, jdoodle or any other Tools - 3. Demonstration of class diagrams for the class abstraction, type visibility, composition and inheritance ### Assessment Method Programming Assignment / Course Project | Python Programming for Data Science | | Semester | 3 | |-------------------------------------|--------------------------------------|-------------|-----| | Course Code | BDS306B | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 2:0:2:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 28 Hours Theory + 20 Hours Practical | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | | Examination type (SEE) | Theory | | | Note - Students who have undergone "Introduction to Python Programming-BPLCK105B/205B" in first year are not eligible to opt this course ### **Course Learning objectives:** - CLO 1:To understand Python constructs and use them to build the programs. - CLO 2: To analyse different conditional statements and their applications in programs. - CLO 3: To learn and use basic data structures in python language. - CLO 4: To learn and demonstrate array manipulations by reading data from files - CLO 5: To understand and use different data in a data analytics context. ### **Teaching-Learning Process (General Instructions)** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. Chalk and board, power point presentations - 2. Online material (Tutorials) and video lectures. - 3. Demonstration of programing examples. Module-1 6 hr Introduction to python: Elements of python language, python block structure, variables and assignment statement, data types in python, operations, simple input/output print statements, formatting print statement. # Text Book 1: Chapter 3 (3.2, 3.3, 3.4, 3.6, 3.7, 3.9 and 3.10) Module-2 5 hr Decision structure: forming conditions, if statement, the if-else and nested if-else, looping statements: introduction to looping, python built in functions for looping, loop statements, jump statement. # Text Book 1: Chapter 4 (4.2 to 4.6), Chapter 5 (5.1 to 5.4) Module-3 5 hr Lists: lists, operation on list, Tuples: introduction, creating, indexing and slicing, operations on tuples. sets: creating, operation in sets, introduction dictionaries, creating, operations, nested dictionary, looping over dictionary. # Text Book 1: Chapter 7 (7.2 to 7.3), Chapter 8 (8.1 to 8.4) and Chapter 9 (9.1 to 9.3, 9.7 to 9.12) Module-4 6 hr **The NumPy Library:** Ndarray: the heart of the library, Basic operations, indexing, slicing and iterating, conditions and boolean arrays, array manipulation, general concepts, reading and writing array data on files. **The pandas Library:** an introduction to Data structure, other functionalities on indexes, operations between data structures, function application and mapping. # Text Book 2: Chapter 3 and Chapter 4. Module-5 6 hr **The pandas : Reading and Writing data:** i/o API tools, CSV and textual files, Reading data in CSV or text files, reading and writing HTML files, reading data from XML files, Microsoft excel files, JSON data, Pickle python object serialization. **Pandas in Depth : data manipulation:** data preparation, concatenating data transformation discretization binning, permutation, string manipulation, data aggregation group iteration. ### Text Book 2: Chapter 5 and Chapter 6 ### Course outcome (Course Skill Set) At the end of the course, the student will be able to: CO1: Describe the constructs of python programming CO2: Use looping and conditional constructs to build programs. CO3: Apply the concept of data structure to solve the real world problem. CO4: Use the NumPy constructs for matrix manipulations CO5: Apply the Panda constructs for data analytics. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. #### **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally reduced to 50 marks 3 # **Suggested Learning Resources:** ### **Text Books:** - 1. S. Sridhar, J. Indumathi, V.M. Hariharan "Python Programming" Pearson publishers, 1st edition 2023. - 2. Fabio Nelli, "Python Data Analytics", Apress, Publishing, 1st Edition, 2015. # Reference Book: 1. Paul Deitel and Harvey deitel,"Intro to Python for Computer Science and Data science", 1st edition Pearson Publisher 2020. # Web links and Video Lectures (e-Resources): Nptel: Introduction to Python for Data Sciencehttps://www.youtube.com/watch?v=tA42nHmmEKw&list=PLh2mXjKcTPSACrQxPM2_10jus_5HX88ht7 # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - Assessment Methods - o Programming Assignment (10 Marks) # **Practical Component** | Sl.NO | Experiments | | | |-------|---|--|--| | 1 | Develop a python program to read n digit integer number, and separate the integer | | | | | number and display each digit. [Hint: input:5678 output: 5 6 7 8, use: floor and | | | | | mod operators) | | | | 2 | Develop a python program to accept 4 numbers and display them in sorted order using a | | | | | minimum number of if else statements. | | | | 3 | Develop python scripts to Calculate the mean, median, mode, variance and standard | | | | | deviation of n integer numbers. | | | | 4 | Develop a program for checking if a given n digit number is palindrome or not. | | | | | [hint: input 1221 output: palindrome, use //and % operator with loop statement] | | | | 5 | Develop a python script to display a multiplication table for given integer n . | | | | 6 | Develop a python script to rotate right about a given position in that list and display them. | | | | | [hint: input [1,4,5,-10] position: 2, output: [-10,5,4,1]] | | | | 7 | DevelopWrite a python script to interchange the digits of a given integer number. | | | | | [hint: input: 23456, interchange: 3 and 5 output: 25436] | | | | 8 | Develop a python program to capitalize a given list of strings. | | | |----|---|--|--| | | [hint: [hello, good, how, simple] output: [Hello, Good, How, Simple] | | | | 9 | Using a dictionary, Develop a python program to determine and print the number of duplicate words in a sentence. | | | | 10 | Develop python program to read Numpy array and print row (sum,mean std) and column (sum,mean,std) |
 | | 11 | Develop a python program to read and print in the console CSV file. | | | | 12 | Develop a python program to read a HTML file with basic tags, and construct a dictionary and display the same in the console. | | | ### Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### CIE for the theory component of the IPCC (maximum marks 50) - IPCC means practical portion integrated with the theory of the course. - CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**. - 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus. - Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**). - The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC. ### CIE for the practical component of the IPCC - **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions. - On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day. - The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**. - The laboratory test **(duration 02/03 hours)** after completion of all the experiments shall be conducted for 50 marks and scaled down to **10 marks**. - Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **25 marks**. - The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. **SEE for IPCC** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours) 5 - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored by the student shall be proportionally scaled down to 50 Marks The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component. | Data Analytics with R | | Semester | 3 | |---------------------------------|--------------------------------------|-------------|-----| | Course Code | BDS306C | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 2;0;2;0 | SEE Marks | 50 | | Total Hours of Pedagogy | 28 Hours Theory + 20 Hours Practical | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | | Examination type (SEE) | Theory | · | | ### Course Learning objectives: - CLO 1: To Gain the knowledge of R Programming Concepts - CLO 2: To Explain the concepts of Data Visualization - CLO 3: To Explain the concept of Statistics in R. - CLO 4: To Work with R charts and Graphs ### Teaching-Learning Process (General Instructions) - 1. Chalk and board, power point presentations - 2. Online material (Tutorials) and video lectures. - 3. Demonstration of programing examples. Module-1 5 hours # Basics of R Introducing R, Initiating R, Packages in R, Environments and Functions, Flow Controls, Loops, Basic Data Types in R, Vectors Chapter 1: 1.1 to 1.7 Chapter 2: 2.1,2.2 Module-2 5 hours # **Basics of R Continued** Matrices and Arrays, Lists, Data Frames, Factors, Strings, Dates and Times Chapter 2: 2.3,2.4,2.5,2.6,2.7.2.8.1,2.8.2 Module-3 6 Hours # Data Preparation Datasets, Importing and Exporting files, Accessing Databases, Data Cleaning and Transformation Chapter 3: 3.1,3.2,3.3,3.4 Module-4 6 Hours # Graphics using R Exploratory Data Analysis, Main Graphical Packages, Pie Charts, Scatter Plots, Line Plots, Histograms, Box Plots, Bar Plots, Other Graphical packages Chapter 4: 4.1 to 4.9 Module-5 6 Hours # Statistical Analysis using R Basic Statistical Measures, Normal distribution, Binomial distribution, Correlation Analysis, Regression Analysis-Linear Regression Analysis of Variance Chapter 5: 5.1, 5.3, 5.4, 5.5, 5.6.1, 5.7 2 ### Course outcome (Course Skill Set) At the end of the course, the student will be able to: CO1: Describe the structures of R Programming. CO2: Illustrate the basics of Data Preparation with real world examples. CO3: Apply the Graphical Packages of R for visualization. CO4: Apply various Statistical Analysis methods for data analytics. # Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. #### Semester-End Examination: Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally reduced to 50 marks ### Suggested Learning Resources: ### Text Books: R Programming: An Approach to Data Analytics, G. Sudhamathy and C. Jothi Venkateswaran, MJP Publishers, 2019 ### Reference Books: 1...An Introduction to R, Notes on R: A Programming Environment for Data Analysis and Graphics. W. N. Venables, D.M. Smith and the R Development Core Team. Version 3.0.1 (2013-05-16) 3 2. Cotton, R. (2013). Learning R: A Step by Step Function Guide to Data Analysis. 1st ed. O'Reilly Media Inc. # Web links and Video Lectures (e-Resources): - 1. URL: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf - 2. http://www.tutorialspoint.com/r/r tutorial.pdf - 3. https://users.phhp.ufl.edu/rlp176/Courses/PHC6089/R notes/intro.html - 4. https://cran.r-project.org/web/packages/explore/vignettes/explore_mtcars.html - 5. https://www.w3schools.com/r/r_stat_data_set.asp - 6. https://rpubs.com/BillB/217355 # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning • Programming Assignment (10 Marks) # **Practical Component** | Sl.NO | Experiments | | | |-------
--|--|--| | 1 | Demonstrate the steps for installation of R and R Studio. Perform the following: a) Assign different type of values to variables and display the type of variable. Assign different types such as Double, Integer, Logical, Complex and Character and understand the difference between each data type. b) Demonstrate Arithmetic and Logical Operations with simple examples. c) Demonstrate generation of sequences and creation of vectors. d) Demonstrate Creation of Matrices e) Demonstrate the Creation of Matrices from Vectors using Binding Function. | | | | | f) Demonstrate element extraction from vectors, matrices and arrays | | | | 2 | Assess the Financial Statement of an Organization being supplied with 2 vectors of data: Monthly Revenue and Monthly Expenses for the Financial Year. You can create your own sample data vector for this experiment) Calculate the following financial metrics: a. Profit for each month. b. Profit after tax for each month (Tax Rate is 30%). c. Profit margin for each month equals to profit after tax divided by revenue. d. Good Months – where the profit after tax was greater than the mean for the year. e. Bad Months – where the profit after tax was less than the mean for the year. f. The best month – where the profit after tax was max for the year. g. The worst month – where the profit after tax was min for the year. Note: a. All Results need to be presented as vectors b. Results for Dollar values need to be calculated with \$0.01 precision, but need to be presented in Units of \$1000 (i.e 1k) with no decimal points c. Results for the profit margin ratio need to be presented in units of % with no decimal point. d. It is okay for tax to be negative for any given month (deferred tax asset) e. Generate CSV file for the data. | | | | 3 | Develop a program to create two 3 X 3 matrices A and B and perform the following operations a) Transpose of the matrix b) addition c) subtraction d) multiplication | | | | 4 | Develop a program to find the factorial of given number using recursive function calls. | | | Develop an R Program using functions to find all the prime numbers up to a specified number by the method of Sieve of Eratosthenes. The built-in data set mammals contain data on body weight versus brain weight. Develop R 6 commands to: a) Find the Pearson and Spearman correlation coefficients. Are they similar? b) Plot the data using the plot command. c) Plot the logarithm (log) of each variable and see if that makes a difference. Develop R program to create a Data Frame with following details and do the following operations. itemCode itemCategory itemPrice 1001 Electronics 700 1002 Desktop Supplies 300 350 1003 Office Supplies 1004 USB 400 1005 CD Drive 800 Subset the Data frame and display the details of only those items whose price is greater than or equal to b) Subset the Data frame and display only the items where the category is either "Office Supplies" or "Desktop Supplies" c) Create another Data Frame called "item-details" with three different fields itemCode, ItemQtyonHand and ItemReorderLvl and merge the two frames 8 Let us use the built-in dataset air quality which has Daily air quality measurements in New York, May to September 1973. Develop R program to generate histogram by using appropriate arguments for the following statements. a) Assigning names, using the air quality data set. b) Change colors of the Histogram c) Remove Axis and Add labels to Histogram d) Change Axis limits of a Histogram e) Add Density curve to the histogram 9 Design a data frame in R for storing about 20 employee details. Create a CSV file named "input.csv" that defines all the required information about the employee such as id, name, salary, start date, dept. Import into R and do the following analysis. a) Find the total number rows & columns b) Find the maximum salary c) Retrieve the details of the employee with maximum salary d) Retrieve all the employees working in the IT Department. Retrieve the employees in the IT Department whose salary is greater than 20000 and write these details into another file "output.csv" 10 Using the built in dataset mtcars which is a popular dataset consisting of the design and fuel consumption patterns of 32 different automobiles. The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models). Format A data frame with 32 observations on 11 variables : [1] mpg Miles/(US) gallon, [2] cyl Number of cylinders [3] disp Displacement (cu.in.), [4] hp Gross horsepower [5] drat Rear axle ratio,[6] wt Weight (lb/1000) [7] qsec 1/4 mile time, [8] vs V/S, [9] am Transmission (0 = automatic, 1 = manual), [10] gear Number of forward gears, [11] carb Number of carburetors Develop R program, to solve the following: a) What is the total number of observations and variables in the dataset? b) Find the car with the largest hp and the least hp using suitable functions c) Plot histogram / density for each variable and determine whether continuous variables are normally distributed or not. If not, what is their skewness? d) What is the average difference of gross horse power(hp) between automobiles with 3 and 4 number of cylinders(cyl)? Also determine the difference in their standard deviations. e) Which pair of variables has the highest Pearson correlation? Demonstrate the progression of salary with years of experience using a suitable data set (You can create your own dataset). Plot the graph visualizing the best fit line on the plot of the given data points. Plot a curve of Actual Values vs. Predicted values to show their correlation and performance of the model. Interpret the meaning of the slope and y-intercept of the line with respect to the given data. Implement using lm function. Save the graphs and coefficients in files. Attach the predicted values of salaries as a new column to the original data set and save the data as a new CSV file. ### **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### CIE for the theory component of the IPCC (maximum marks 50) - IPCC means practical portion integrated with the theory of the course. - CIE marks for the theory component are 25 marks and that for the practical component is 25 marks. - 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus. - Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**). - \bullet $\;$ The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC. ### CIE for the practical component of the IPCC - **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions. - On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day. - The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**. - The laboratory test **(duration 02/03 hours)** after completion of all the experiments shall be conducted for 50 marks and scaled down to **10 marks**. - Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **25 marks**. - The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. **SEE for IPCC** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours) - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be
2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored by the student shall be proportionally scaled down to 50 Marks The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component. | BSCK307 – Social Connect & Responsibility
2022 Scheme & syllabus for 3 rd sem | | | 3 rd | |---|--|-------------|-----------------| | Course Code | BSCK307 | CIE Marks | 100 | | Teaching Hours/Week (L:T:P: S) | 0:0:3:1 | SEE Marks | | | Total Hours of Pedagogy | 40 hour Practical Session +15 hour Planning | Total Marks | 100 | | Examination nature
(No SEE – Only CIE) | For CIE Assessment - Activities Report Eval
Officer / HOD / Sports Dept / A | • | lege NSS | | Credits 01 - Credit | | _ | | # Course objectives: The course will enable the students to: - 1. Provide a formal platform for students to communicate and connect to the surrounding. - 2. create a responsible connection with the society. - 3. Understand the community in general in which they work. - 4. Identify the needs and problems of the community and involve them in problem –solving. - 5. Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems. - 6. Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes. # **General Instructions - Pedagogy:** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the activities will develop students' theoretical and applied social and cultural skills. - 2. State the need for activities and its present relevance in the society and Provide real-life examples. - 3. Support and guide the students for self-planned activities. - **4.** You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress in real activities in the field. - 5. Encourage the students for group work to improve their creative and analytical skills. ### **Contents:** The course is mainly activity-based that will offer a set of activities for the student that enables them to connect with fellow human beings, nature, society, and the world at large. The course will engage students for interactive sessions, open mic, reading group, storytelling sessions, and semester-long activities conducted by faculty mentors. In the following a set of activities planned for the course have been listed: # **Social Connect & Responsibility - Contents** ### Part I: ### Plantation and adoption of a tree: Plantation of a tree that will be adopted for four years by a group of BE / B.Tech students. (ONE STUDENT ONE TREE) They will also make an excerpt either as a documentary or a photo blog describing the plant's origin, its usage in daily life, its appearance in folklore and literature - Objectives, Visit, case study, report, outcomes. ### Part II: ### **Heritage walk and crafts corner:** Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photo blog and documentary on evolution and practice of various craft forms - Objectives, Visit, case study, report, outcomes. ### Part III: ### **Organic farming and waste management:** Usefulness of organic farming, wet waste management in neighboring villages, and implementation in the campus - Objectives, Visit, case study, report, outcomes. ### **Part IV:** ### Water conservation: Knowing the present practices in the surrounding villages and implementation in the campus, documentary or photoblog presenting the current practices – Objectives, Visit, case study, report, outcomes. ### Part V: ### Food walk: City's culinary practices, food lore, and indigenous materials of the region used in cooking – Objectives, Visit, case study, report, outcomes. ### **Course outcomes (Course Skill Set):** At the end of the course, the student will be able to: - CO1: Communicate and connect to the surrounding. - CO2: Create a responsible connection with the society. - CO3: Involve in the community in general in which they work. - CO4: Notice the needs and problems of the community and involve them in problem –solving. - CO5: Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems. - CO6: Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes. ### **Activities:** Jamming session, open mic, and poetry: Platform to connect to others. Share the stories with others. Share the experience of Social Connect. Exhibit the talent like playing instruments, singing, one-act play, art-painting, and fine art. ### PEDAGOGY: The pedagogy will include interactive lectures, inspiring guest talks, field visits, social immersion, and a course project. Applying and synthesizing information from these sources to define the social problem to address and take up the solution as the course project, with your group. Social immersionwith NGOs/social sections will be a key part of the course. Will all lead to the course project that will address the needs of the social sector? # **COURSE TOPICS:** The course will introduce social context and various players in the social space, and present approaches to discovering and understanding social needs. Social immersion and inspiring conversional will culminate in developing an actual, idea for problem-based intervention, based on an in-depth understanding of a key social problem. ### **Duration:** A total of 40 - 50 hrs engagement per semester is required for the 3rd semester of the B.E. /B.Tech. program. The students will be divided into groups. Each group will be handled by faculty mentor. Faculty mentor will design the activities (particularly Jamming sessions open mic ,and poetry) Faculty mentors has to design the evaluation system as per VTU guidelines of scheme & syllabus. # **Guideline for Assessment Process:** # **Continuous Internal Evaluation (CIE):** After completion of the course, the student shall prepare, with daily diary as reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learned in the social connect period. The report should be signed by the mentor. The report shall be evaluated on the basis of the following criteria and/or other relevant criteria pertaining to the activity completed. Marks allotted for the diary are out of 50. Planning and scheduling the social connect Information/Data collected during the social connect Analysis of the information/data and report writing Considering all above points allotting the marks as mentioned below Excellent : 80 to 100 Good : 60 to 79 Satisfactory : 40 to 59 Unsatisfactory and fail : <39 **Special Note:** NO SEE - Semester End Exam - Completely Practical and activities based evaluation # **Pedagogy – Guidelines:** It may differ depending on local resources available for the study as well as environment and climatic differences, location and time of execution. | SI
No | Topic | Group
size | Location | Activity execution | Reporting | Evaluation
Of the Topic | |----------|---|---------------------------------|---|---|--|---| | 1. | Plantation and adoption of a tree: | May be
individual
or team | Farmers land/ parks /
Villages / roadside/
community area /
College campus etc | Site selection
/proper
consultation/Contin
uous monitoring/
Information board | Report should
be submitted by
individual to the
concerned evaluation
authority | Evaluation as
per the rubrics
Of scheme and
syllabus by
Faculty | | 2. | Heritage walk and crafts corner: | May be individual or team | Temples / monumental places / Villages/ City Areas / Grama panchayat/ public associations/Government Schemes officers/ campus etc | Site selection
/proper
consultation/Contin
uous monitoring/
Information board | Report should
be submitted by
individual to the
concerned
evaluation authority | Evaluation as
per the rubrics
Of scheme and
syllabus by
Faculty | | 3. | Organic farming and waste management: | May be individual or team | Farmers land / parks /
Villages visits
/ roadside/ community
area / College campus
etc | Group selection / proper consultation / Continuous monitoring / Information board | Report should
be submitted by
individual to the
concerned
evaluation authority | Evaluation as
per the rubrics
Of scheme and
syllabus by
Faculty | | 4. | Water conservation: & conservation techniques | May be individual or team | Villages/ City Areas / Grama panchayat/ public associations/Governme nt Schemes officers
/ campus etc | site selection / proper consultation/Contin uous monitoring/ Information board | Report should
be submitted by
individual to the
concerned
evaluation authority | Evaluation as
per the rubrics
Of scheme and
syllabus by
Faculty | | 5. | Food walk:
Practices in
society | May be
individual
or team | Villages/ City Areas / Grama panchayat/ public associations/Governme nt Schemes officers/ campus etc | Group selection / proper consultation / Continuous monitoring / Information board | Report should
be submitted by
individual to the
concerned
evaluation authority | Evaluation as
per the rubrics
Of scheme and
syllabus by
Faculty | # **Plan of Action (Execution of Activities)** | Sl.NO | Practice Session Description | |-------|--| | 1 | Lecture session in field to start activities | | 2 | Students Presentation on Ideas | | 3 | Commencement of activity and its progress | | 4 | Execution of Activity | | 5 | Execution of Activity | | 6 | Execution of Activity | | 7 | Execution of Activity | | 8 | Case study based Assessment, Individual performance | | 9 | Sector/ Team wise study and its consolidation | | 10 | Video based seminar for 10 minutes by each student At the end of semester with Report. | - Each student should do activities according to the scheme and syllabus. - At the end of semester student performance has to be evaluated by the faculty for the assigned activity progress and its completion. - At last consolidated report of all activities from 1st to 5th, compiled report should be submitted as per the instructions and scheme. # Assessment Details for CIE (both CIE and SEE) | Weightage | CIE – 100% | • Implementation strategies of the project (| |---|----------------------------------|---| | Field Visit, Plan, Discussion Commencement of activities and its progress Case study based Assessment | 10 Marks
20 Marks
20 Marks | NSS work).The last report should be signed by NSS Officer, the HOD and principal. | | Individual performance with report Sector wise study & its consolidation 5*5 = 25 25 Marks | | • At last report should be evaluated by the NSS officer of the institute. | | Video based seminar for 10 minutes by each student At the end of semester with Report. Activities 1 to 5, 5*5 = 25 | 25 Marks | Finally the consolidated marks sheet should
be sent to the university and also to be made
available at LIC visit. | | Total marks for the course in each semester | 100 Marks | available at LIC visit. | For each activity, 20 marks CIE will be evaluated for IA marks at the end of semester, Report and assessment copy should be made available in the department. Students should present the progress of the activities as per the schedule in the prescribed practical session in the field. There should be positive progress in the vertical order for the benefit of society in general through activities. | Data Analytics with Excel | | Semester | 3 | |----------------------------------|---------|------------|-----| | Course Code | BCS358A | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 0:0:2:0 | SEE Marks | 50 | | Credits | 01 | Exam Hours | 100 | | Examination type (SEE) Practical | | | | # Course objectives: - To Apply analysis techniques to datasets in Excel - Learn how to use Pivot Tables and Pivot Charts to streamline your workflow in Excel - Understand and Identify the principles of data analysis - Become adept at using Excel functions and techniques for analysis - Build presentation ready dashboards in Excel | Sl.NO | Experiments | |-------|--| | 1 | Getting Started with Excel: Creation of spread sheets, Insertion of rows and columns, Drag & Fill, use of Aggregate functions. | | 2 | Working with Data: Importing data, Data Entry & Manipulation, Sorting & Filtering. | | 3 | Working with Data: Data Validation, Pivot Tables & Pivot Charts. | | 4 | Data Analysis Process: Conditional Formatting, What-If Analysis, Data Tables, Charts & Graphs. | | 5 | Cleaning Data with Text Functions: use of UPPER and LOWER, TRIM function, Concatenate. | | 6 | Cleaning Data Containing Date and Time Values: use of DATEVALUE function, DATEADD and DATEDIF, TIMEVALUE functions. | | 7 | Conditional Formatting : formatting, parsing, and highlighting data in spreadsheets during data analysis. | | 8 | Working with Multiple Sheets : work with multiple sheets within a workbook is crucial for organizing and managing data, perform complex calculations and create comprehensive reports. | | 9 | Create worksheet with following fields: Empno, Ename, Basic Pay(BP), Travelling Allowance(TA), Dearness Allowance(DA), House Rent Allowance(HRA), Income Tax(IT), Provident Fund(PF), Net Pay(NP). Use appropriate formulas to calculate the above scenario. Analyse the data using appropriate chart and report the data. | | 10 | Create worksheet on Inventory Management: Sheet should contain Product code, Product name, Product type, MRP, Cost after % of discount, Date of purchase. Use appropriate formulas to calculate the above scenario. Analyse the data using appropriate chart and report the data. | | | 11 | Create worksheet on Sales analysis of Merchandise Store: data consisting of Order ID, | |---|----|---| | | | Customer ID, Gender, age, date of order, month, online platform, Category of product, size, | | | | quantity, amount, shipping city and other details. Use of formula to segregate different | | | | categories and perform a comparative study using pivot tables and different sort of charts. | | - | 12 | Generation of report & presentation using Autofilter ¯o. | | | | | # **Course outcomes (Course Skill Set):** At the end of the course the student will be able to: - Use advanced functions and productivity tools to assist in developing worksheets. - Manipulate data lists using Outline and PivotTables. - Use Consolidation to summarise and report results from multiple worksheets. - Apply Macros and Autofilter to solve the given real world scenario. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together # **Continuous Internal Evaluation (CIE):** CIE marks for the practical course are **50 Marks**. The split-up of CIE marks for record/journal and test are in the ratio **60:40**. - Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session. - Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. - Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks). - Weightage to be given for neatness and submission of record/write-up on time. - Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus. - In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce. - The suitable rubrics can be designed to evaluate each student's performance and learning ability. - The marks scored shall be scaled down to **20 marks** (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student. # **Semester End Evaluation (SEE):** - SEE marks for the practical course are 50 Marks. - SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute. - The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University. - All laboratory experiments are to be included for practical examination. - (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. - Students can pick one question (experiment) from the questions lot prepared by the examiners jointly. - Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. - General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100
marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) - Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 02 hours # **Suggested Learning Resources:** - **Berk & Carey** Data Analysis with Microsoft® Excel: Updated for Offi ce 2007®, Third Edition, © 2010 Brooks/Cole, Cengage Learning, ISBN-13: 978-0-495-39178-4 - Wayne L. Winston Microsoft Excel 2019: Data Analysis And Business Modeling, PHI, ISBN: 9789389347180 - Aryan Gupta Data Analysis in Excel: The Best Guide. (https://www.simplilearn.com/tutorials/excel-tutorial/data-analysis-excel) | Ethics and I | Public Policy for AI | | Semester | | |--------------------------------|----------------------|------|-------------|-----| | Course Code | BAI358B | | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 1:0:0 | | SEE Marks | 50 | | Total Hours of Pedagogy | 14 | | Total Marks | 100 | | Credits | 03 | | Exam Hours | 2 | | Examination type (SEE) | Th | eory | | | ### Course objectives: - To understand Ethical Framework for a Good AI Society, establishing Rules for trustworthy AI - To Designing ethics for good society - To familiar with Tools, methods and practices for designing AI for social good - To familiar with Innovation and future AI - To understand the Case Study: Ai in health care, knowing Regulation and Governance of AI ethics ### **Teaching-Learning Process (General Instructions)** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. Chalk and Talk - 2. Real time Examples - 3. Natural Approaches #### Module-1 **An Ethical Framework for a Good AI Society:** opportunities, Risks, principles and Recommendations. **Establishing the rules for building trustworthy AI** Textbook1: Chapter 3, chapter 4 #### Module-2 **Translating principles into practices of digital ethics:** five risks of being Unethical The Ethics of Algorithms: Key problems and Solution How to Design AI for Social Good: Seven Essential Factors Textbook1: Chapter 6, Chapter 8, Chapter 9 ### Module-3 # How to design AI for social good: seven essential factors **From What to How:** An Initial Review of publicly available AI Ethics tools, Methods and Research to Translate principles into Practices Textbook1: Chapter 9, Chapter 10 #### Module-4 **Innovating with Confidence**: Embedding AI Governance and fairness in financial Services Risk management framework, What the near future of AI could be. Textbook1: Chapter 20, chapter 22 ### Module-5 **Human-AI Relationship**, AI and Workforce, Autonomous Machines and Moral Decisions, **AI in HealthCare**: balancing Progress and Ethics, ### **Regulation and Governance of AI Ethics** Textbook2: Chapter 5, Chapter 8, Chapter 9 ### Course outcome (Course Skill Set) At the end of the course, the student will be able to: - 1. Describe Ethical Framework for a Good AI Society, establishing Rules for trustworthy AI - 2. Explain ethics for good society - 3. Illustrate various Tools, methods and practices for designing AI for social good - 4. Describe the Innovation and future AI - 5. Illustrate Regulation and Governance of AI ethics in Healthcare domain. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. #### **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - $1. \quad \text{The question paper will have ten questions. Each question is set for 20 marks.} \\$ - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally reduced to 50 marks ### **Suggested Learning Resources:** #### Books - 1. "Ethics, governance and Policies in Artificial Intelligence", Author-Editor: Luciano Floridi, Springer, 1st Edition 2021, vol 144, Oxford Internet Institute, University of ixford, UK, ISSN 0921-8599, e-ISSN 2542-8349 Philosophical Studies series, ISBN 978-3-030-81906-4 e-ISBN 978-3-030-81907-1, ://doi.orghttps/10.1007/978-3-030-81907-1, 2021. - 2. "Ethics and AI: Navigating the Moral Landscape of Digital Age", Author: Aaron Aboagye, | Project Management with Git | | Semester | 3 | |----------------------------------|-------------|------------|-----| | Course Code | BCS358C | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 0: 0 : 2: 0 | SEE Marks | 50 | | Credits | 01 | Exam Marks | 100 | | Examination type (SEE) Practical | | | | # Course objectives: - .To familiar with basic command of Git - To create and manage branches - To understand how to collaborate and work with Remote Repositories - To familiar with virion controlling commands | | tamiliar with virion controlling commands | |-------|---| | Sl.NO | Experiments | | 1 | Setting Up and Basic Commands | | | Initialize a new Git repository in a directory. Create a new file and add it to the staging area and commit the changes with an appropriate commit message. | | 2 | Creating and Managing Branches | | | Create a new branch named "feature-branch." Switch to the "master" branch. Merge the "feature-branch" into "master." | | 3 | Creating and Managing Branches | | 3 | Write the commands to stash your changes, switch branches, and then apply the stashed changes. | | 4 | Collaboration and Remote Repositories | | | Clone a remote Git repository to your local machine. | | 5 | Collaboration and Remote Repositories | | | Fetch the latest changes from a remote repository and rebase your local branch onto the updated remote branch. | | 6 | Collaboration and Remote Repositories | | | Write the command to merge "feature-branch" into "master" while providing a custom commit message for the merge. | | 7 | Git Tags and Releases | | | Write the command to create a lightweight Git tag named "v1.0" for a commit in your local repository. | | 8 | Advanced Git Operations | • Analyse and change the git history | | Write the command to cherry-pick a range of commits from "source-branch" to the current | |--------|---| | | branch. | | 9 | Analysing and Changing Git History | | | | | | Given a commit ID, how would you use Git to view the details of that specific commit, | | | including the author, date, and commit message? | | 10 | Analysing and Changing Git History | | | | | | Write the command to list all commits made by the author "JohnDoe" between "2023-01-01" | | | and "2023-12-31." | | | | | 11 | Analysing and Changing Git History | | | , g g, | | | White the common to displace the last Common to its the many thinks and | | | Write the command to display the last five commits in the repository's history. | | | | | 12 | Analysing and Changing Git History | | | Write the command to undo the changes introduced by the commit with the ID "abc123". | | Course | e outcomes (Course Skill Set): | | | end of the course the student will be able to: | | • | Use the basics commands related to git repository | | • | Create and manage the branches | | • | Apply commands related to Collaboration and Remote Repositories | | • | Use the commands related to Git Tags, Releases and advanced git operations | # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together # **Continuous Internal Evaluation (CIE):** CIE marks for the practical course are **50 Marks**. The split-up of CIE marks for record/journal and test are in the ratio **60:40**. - Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the
journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session. - Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. - Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks). - Weightage to be given for neatness and submission of record/write-up on time. - Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus. - In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce. - The suitable rubrics can be designed to evaluate each student's performance and learning ability. - The marks scored shall be scaled down to **20 marks** (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student. # **Semester End Evaluation (SEE):** - SEE marks for the practical course are 50 Marks. - SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute. - The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University. - All laboratory experiments are to be included for practical examination. - (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. - Students can pick one question (experiment) from the questions lot prepared by the examiners jointly. - Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. - General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) - Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 02 hours ### **Suggested Learning Resources:** - Version Control with Git, 3rd Edition, by Prem Kumar Ponuthorai, Jon Loeliger Released October 2022, Publisher(s): O'Reilly Media, Inc. - Pro Git book, written by Scott Chacon and Ben Straub and published by Apress, https://git-scm.com/book/en/v2 - https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 0130944433473699842782 shared /overview - https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01330134712177459211926_share d/overview | PHP Pro | gramming | Semester | 3 | |--------------------------------|----------|------------|----| | Course Code | BAI358D | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 0:0:2:0 | SEE Marks | 50 | | Credits | 01 | Exam Hours | 02 | | Examination type (SEE) | Prac | tical | | | Course objectives: | | | | - To introduce the PHP syntax, elements, and control structures | • | To make use of PHP Functions and File handling | | | |-------|--|--|--| | • | To illustrate the concept of PHP arrays and OOPs | | | | Sl.NO | Experiments | | | | AIM: | AIM: Introduction to HTML/PHP environment, PHP Data Types, Variables, Literals, and operators | | | | 1 | a. Develop a PHP program to calculate areas of Triangle and Rectangle. | | | | | b. Develop a PHP program to calculate Compound Interest. | | | | 2 | Demonstrating the various forms to concatenate multiple strings | | | | | Develop program(s) to demonstrate concatenation of strings: | | | | | (i) Strings represented with literals (single quote or double quote) | | | | | (ii) Strings as variables | | | | | (iii) Multiple strings represented with literals (single quote or double quote) and variables | | | | | (iv) Strings and string variables containing single quotes as part string contents | | | | | (v) Strings containing HTML segments having elements with attributes | | | | 3 | a. Develop a PHP Program(s) to check given number is: | | | | | (i) Odd or even | | | | | (ii) Divisible by a given number (N) | | | | | (iii) Square of a another number | | | | | b. Develop a PHP Program to compute the roots of a quadratic equation by accepting the coefficients. | | | | 4 | Print the appropriate messages. a. Develop a PHP program to find the square root of a number by using the newton's algorithm. | | | | 4 | a. Develop a PHP program to find the square root of a number by using the newton's algorithm.b. Develop a PHP program to generate Floyd's triangle. | | | | 5 | | | | |) | a. Develop a PHP application that reads a list of numbers and calculates mean and standard deviation. | | | | | b. Develop a PHP application that reads scores between 0 and 100 (possibly including both 0 and 100) | | | | | and creates a histogram array whose elements contain the number of scores between 0 and 9, 10 and | | | | | 19, etc. The last "box" in the histogram should include scores between 90 and 100. Use a function to | | | | | generate the histogram. | | | | 6 | a. Develop PHP program to demonstrate the date() with different parameter options. | | | | | b. Develop a PHP program to generate the Fibonacci series using a recursive function. | | | | 7 | Develop a PHP program to accept the file and perform the following | | | | | (i) Print the first N lines of a file | | | | | (ii) Update/Add the content of a file | | | | 8 | Develop a PHP program to read the content of the file and print the frequency of occurrence of the word | | | | | accepted by the user in the file | | | | | | | | | 9 | Develop a PHP program to filter the elements of an array with key names. | | | | | Sample Input Data: | | | | | 1st array: ('c1' => 'Red', 'c2' => 'Green', 'c3' => 'White', c4 => 'Black') | | | | | 2nd array: ('c2', 'c4') | | | | | · | | | | | Output: | |----|---| | | Array | | | (| | | [c1] => Red | | | [c3] => White | | |) | | 10 | Develop a PHP program that illustrates the concept of classes and objects by reading and printing | | | employee data, including Emp_Name, Emp_ID, Emp_Dept, Emp_Salary, and Emp_DOJ. | | 11 | a. Develop a PHP program to count the occurrences of Aadhaar numbers present in a text. | | | b. Develop a PHP program to find the occurrences of a given pattern and replace them with a text. | | 12 | Develop a PHP program to read the contents of a HTML form and display the contents on a browser. | | | | # NOTE: Necessary HTML elements (and CSS) can be used for designing the experiments. # **Course outcomes (Course Skill Set):** At the end of the course, the student will be able to: - Apply basic concepts of PHP to develop web program - Develop programs in PHP involving control structures - Develop programs to handle structured data (object) and data items (array) - Develop programs to access and manipulate contents of files - Use super-global arrays and regular expressions to solve real world problems. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together # **Continuous Internal Evaluation (CIE):** CIE marks for the practical course are **50 Marks**. The split-up of CIE marks for record/journal and test are in the ratio **60:40**. - Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session. - Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. - Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks). - Weightage to be given for neatness and submission of record/write-up on time. - Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus. - In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce. - The suitable rubrics can be designed to evaluate each student's performance and learning ability. - The marks scored shall be scaled down to **20 marks** (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student. ### **Semester End Evaluation (SEE):** - SEE marks for the practical course are 50 Marks. - SEE shall be conducted jointly by the two examiners of the
same institute, examiners are appointed by the Head of the Institute. - The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University. - All laboratory experiments are to be included for practical examination. - (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. - Students can pick one question (experiment) from the questions lot prepared by the examiners jointly. - Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. - General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) - Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 02 hours ### **Suggested Learning Resources:** - BOOK: Programming in HTML and PHP (Coding for Scientists and Engineers, BY DEVID R BROOKS, Springer International Publishing AG 2017 - PHP TUTORIALS: [https://www.w3schools.com/php/] - PHP TUTORIALS: [https://www.tutorialspoint.com/php/index.htm] - HTML TUTORIALS: [https://www.w3schools.com/html/] | Analysis & Design of Algorithms Semester | | 4 | | |--|---------|-------------|-----| | Course Code | BCS401 | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 3:0:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | | Examination type (SEE) | Theory | | • | ### **Course objectives:** - To learn the methods for analyzing algorithms and evaluating their performance. - To demonstrate the efficiency of algorithms using asymptotic notations. - To solve problems using various algorithm design methods, including brute force, greedy, divide and conquer, decrease and conquer, transform and conquer, dynamic programming, backtracking, and branch and bound. - To learn the concepts of P and NP complexity classes. ### **Teaching-Learning Process (General Instructions)** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) does not mean only the traditional lecture method, but different types of teaching methods may be adopted to achieve the outcomes. - **2.** Utilize video/animation films to illustrate the functioning of various concepts. - **3.** Promote collaborative learning (Group Learning) in the class. - **4.** Pose at least three HOT (Higher Order Thinking) questions in the class to stimulate critical thinking. - **5.** Incorporate Problem-Based Learning (PBL) to foster students' analytical skills and develop their ability to evaluate, generalize, and analyze information rather than merely recalling it. - **6.** Introduce topics through multiple representations. - **7.** Demonstrate various ways to solve the same problem and encourage students to devise their own creative solutions. - **8.** Discuss the real-world applications of every concept to enhance students' comprehension. ### Module-1 **INTRODUCTION:** What is an Algorithm?, Fundamentals of Algorithmic Problem Solving. **FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY:** Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non recursive Algorithms, Mathematical Analysis of Recursive Algorithms. **BRUTE FORCE APPROACHES:** Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching. Chapter 1 (Sections 1.1,1.2), Chapter 2(Sections 2.1,2.2,2.3,2.4), Chapter 3(Section 3.1,3.2) ### Module-2 **BRUTE FORCE APPROACHES (contd..):** Exhaustive Search (Travelling Salesman probem and Knapsack Problem). **DECREASE-AND-CONQUER:** Insertion Sort, Topological Sorting. **DIVIDE AND CONQUER:** Merge Sort, Quick Sort, Binary Tree Traversals, Multiplication of Large Integers and Strassen's Matrix Multiplication. # Chapter 3 (Section 3.4), Chapter 4 (Sections 4.1,4.2), Chapter 5 (Section 5.1,5.2,5.3, 5.4) ### Module-3 **TRANSFORM-AND-CONQUER:** Balanced Search Trees, Heaps and Heapsort. **SPACE-TIME TRADEOFFS:** Sorting by Counting: Comparison counting sort, Input Enhancement in String Matching: Horspool's Algorithm. Chapter 6 (Sections 6.3,6.4), Chapter 7 (Sections 7.1,7.2) ### **Module-4** **DYNAMIC PROGRAMMING:** Three basic examples, The Knapsack Problem and Memory Functions, Warshall's and Floyd's Algorithms. **THE GREEDY METHOD:** Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm, Huffman Trees and Codes. Chapter 8 (Sections 8.1,8.2,8.4), Chapter 9 (Sections 9.1,9.2,9.3,9.4) ### Module-5 **LIMITATIONS OF ALGORITHMIC POWER:** Decision Trees, P, NP, and NP-Complete Problems. **COPING WITH LIMITATIONS OF ALGORITHMIC POWER:** Backtracking (n-Queens problem, Subset-sum problem), Branch-and-Bound (Knapsack problem), Approximation algorithms for NP-Hard problems (Knapsack problem). Chapter 11 (Section 11.2, 11.3), Chapter 12 (Sections 12.1,12.2,12.3) # Course outcome (Course Skill Set) At the end of the course, the student will be able to: - 1. Apply asymptotic notational method to analyze the performance of the algorithms in terms of time complexity. - 2. Demonstrate divide & conquer approaches and decrease & conquer approaches to solve computational problems. - 3. Make use of transform & conquer and dynamic programming design approaches to solve the given real world or complex computational problems. - 4. Apply greedy and input enhancement methods to solve graph & string based computational problems. - 5. Analyse various classes (P,NP and NP Complete) of problems - 6. Illustrate backtracking, branch & bound and approximation methods. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. #### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ### **Semester-End Examination:** Theory SEE will be conducted by the University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally **reduced to 50 marks** # **Suggested Learning Resources:** ### **Textbooks** 1. Introduction to the Design and Analysis of Algorithms, By Anany Levitin, 3rd Edition (Indian), 2017, Pearson. ### Reference books - 1. Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran, 2nd Edition, 2014, Universities Press. - 2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI. - 3. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education) # Web links and Video Lectures (e-Resources): • Design and Analysis of Algorithms: https://nptel.ac.in/courses/106/101/106101060/ # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - Promote real-world problem-solving and competitive problem solving through group discussions to engage students actively in the learning process. - Encourage students to enhance their problem-solving skills by implementing algorithms and solutions through programming exercises, fostering practical application of theoretical concepts. # Assessment Methods - - 1. Problem Solving Assignments (Hacker Rank/ Hacker Earth / Leadcode) - 2. Gate Based Aptitude Test | ARTIFICIAL INTELLIGENCE Semester | | IV | | |----------------------------------|----------------------------------|-------------|-----| | Course Code | BAD402 | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 3:0:2:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 hours Theory + 8-10 Lab slots | Total Marks | 100 | | Credits | 04 | Exam Hours | | | Examination nature (SEE) Theory/ | | | | # Course objectives: - Gain a historical perspective of AI and its foundations. - Become familiar with basic
principles of AI toward problem solving - Get to know approaches of inference, perception, knowledge representation, and learning ### **Teaching-Learning Process (General Instructions)** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer methods (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it. - 6. Introduce Topics in manifold representations. - 7. Demonstrate ways to solve the same problem and encourage the students to come up with their own creative solutions. - 8. Discuss application of every concept to solve the real world problems. ### **MODULE-1** **Introduction:** What is AI? Foundations and History of AI **Intelligent Agents:** Agents and environment, Concept of Rationality, The nature of environment, The structure of agents. **Text book 1**: Chapter 1- 1.1, 1.2, 1.3 Chapter 2- 2.1, 2.2, 2.3, 2.4 ### **MODULE-2** **Problem-solving**: Problem-solving agents, Example problems, Searching for Solutions Uninformed Search Strategies: Breadth First search, Depth First Search, Iterative deepening depth first search; **Text book 1**: Chapter 3- 3.1, 3.2, 3.3, 3.4 ### **MODULE-3** **Informed Search Strategies**: Heuristic functions, Greedy best first search, A*search. Heuristic Functions **Logical Agents**: Knowledge-based agents, The Wumpus world, Logic, Propositional logic, Reasoning patterns in Propositional Logic **Text book 1**: Chapter 3-3.5,3.6 Chapter 4 – 4.1, 4.2 Chapter 7-7.1, 7.2, 7.3, 7.4, 7.5 ### **MODULE-4** **First Order Logic**: Representation Revisited, Syntax and Semantics of First Order logic, Using First Order logic. **Inference in First Order Logic**: Propositional Versus First Order Inference, Unification, Forward Chaining, Backward Chaining, Resolution Text book 1: Chapter 8-8.1, 8.2, 8.3 Chapter 9-9.1, 9.2, 9.3, 9.4, 9.5 ### **MODULE-5** **Uncertain Knowledge and Reasoning: Quantifying Uncertainty**: Acting under Uncertainty, Basic Probability Notation, Inference using Full Joint Distributions, Independence, Baye's Rule and its use. Wumpus World Revisited Expert Systems: Representing and using domain knowledge, ES shells. Explanation, knowledge acquisition Text Book 1: Chapter 13-13.1, 13.2, 13.3, 13.4, 13.5, 13.6 Text Book 2: Chapter 20 # PRACTICAL COMPONENT OF IPCC(May cover all / major modules) NOTE: Programs need to be implemented in python | | Programs need to be implemented in python | |------|---| | Sl.N | Experiments | | O | | | 1 | Implement and Demonstrate Depth First Search Algorithm on Water Jug Problem | | 2 | Implement and Demonstrate Best First Search Algorithm on Missionaries-Cannibals Problems using Python | | 3 | Implement A* Search algorithm | | 4 | Implement AO* Search algorithm | | 5 | Solve 8-Queens Problem with suitable assumptions | | 6 | Implementation of TSP using heuristic approach | | 7 | Implementation of the problem solving strategies: either using Forward Chaining or Backward Chaining | | 8 | Implement resolution principle on FOPL related problems | | 9 | Implement Tic-Tac-Toe game using Python | | 10 | Build a bot which provides all the information related to text in search box | |----|--| | 11 | Implement any Game and demonstrate the Game playing strategies | #### **Course outcomes (Course Skill Set):** At the end of the course, the student will be able to: - CO1: Apply knowledge of agent architecture, searching and reasoning techniques for different applications. - CO 2. Compare various Searching and Inferencing Techniques. - CO 3. Develop knowledge base sentences using propositional logic and first order logic - CO 4. Describe the concepts of quantifying uncertainty. - CO5: Use the concepts of Expert Systems to build applications. #### **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. #### CIE for the theory component of the IPCC (maximum marks 50) - IPCC means practical portion integrated with the theory of the course. - CIE marks for the theory component are 25 marks and that for the practical component is 25 marks. - 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 22OB4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus. - Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**). - The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC. # CIE for the practical component of the IPCC - 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for the test to be conducted after the completion of all the laboratory sessions. - On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day. - The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**. - The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks. - Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 25 marks. • The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. #### **SEE for IPCC** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**) - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scoredby the student shall be proportionally scaled down to 50 Marks The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component. #### **Suggested Learning Resources:** #### **Text Books** - 1. Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson, 2015 - 2. Elaine Rich, Kevin Knight, Artificial Intelligence, 3rd edition, Tata McGraw Hill, 2013 #### Reference: - 1. George F Lugar, Artificial Intelligence Structure and strategies for complex, Pearson Education, 5th Edition, 2011 - 2. Nils J. Nilsson, Principles of Artificial Intelligence, Elsevier, 1980 - 3. Saroj Kaushik, Artificial Intelligence, Cengage learning, 2014 # Web links and Video Lectures (e-Resources) - 1. https://www.kdnuggets.com/2019/11/10-free-must-read-books-ai.html - 2. https://www.udacity.com/course/knowledge-based-ai-cognitive-systems--ud409 - 3. https://nptel.ac.in/courses/106/105/106105077/ #### Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - 1. Group discussion on Real world examples - 2. Project based learning - 3. Simple strategies on gaming, reasoning and uncertainty etc | DATABASE MANAGEMENT SYSTEM | | Semester | 4 | |--------------------------------|----------------------------------|-------------|-----| | Course Code | BCS403 | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 3:0:2:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 hours Theory + 8-10 Lab slots | Total Marks | 100 | | Credits | 04 | Exam Hours | | | Examination nature (SEE) | Theory | | | - To Provide a strong foundation in database concepts, technology, and practice. - To Practice SQL programming through a variety of database problems. - To Understand the relational database design principles. - To Demonstrate the use of concurrency and transactions in database. - To Design and build database applications for real world problems. - To become familiar with database storage structures and access techniques. #### **Teaching-Learning Process** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3.
Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it. - 6. Introduce Topics in manifold representations. - 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them. - 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding - 9. Use any of these methods: Chalk and board, Active Learning, Case Studies MODULE-1 No. of Hours: 8 **Introduction to Databases:** Introduction, Characteristics of database approach, Advantages of using the DBMS approach, History of database applications. Overview of Database Languages and Architectures: Data Models, Schemas, and Instances. Three schema architecture and data independence, database languages, and interfaces, The Database System environment. Conceptual Data Modelling using Entities and Relationships: Entity types, Entity sets and structural constraints, Weak entity types, ER diagrams, Specialization and Generalization. Textbook 1:Ch 1.1 to 1.8, 2.1 to 2.6, 3.1 to 3.10 RBT: L1, L2, L3 MODULE-2 No. of Hours: 8 @# 16032024 **Relational Model**: Relational Model Concepts, Relational Model Constraints and relational database schemas, Update operations, transactions, and dealing with constraint violations. **Relational Algebra:** Unary and Binary relational operations, additional relational operations (aggregate, grouping, etc.) Examples of Queries in relational algebra. Mapping Conceptual Design into a Logical Design: Relational Database Design using ER-to-Relational mapping. Textbook 1: Ch 5.1 to 5.3, Ch 8.1 to 8.5; Ch 9.1 to 9.2 Textbook 2: 3.5 **RBT:** L1, L2, L3 MODULE-3 No. of Hours:8 **Normalization: Database Design Theory** – Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. **SQL:** SQL data definition and data types, Schema change statements in SQL, specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL, Additional features of SQL Textbook 1: Ch 14.1 to 14.7, Ch 6.1 to 6.5 **RBT:** L1, L2, L3 MODULE-4 No. of Hours:8 **SQL:** Advanced Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action triggers, Views in SQL. **Transaction Processing:** Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL. Textbook 1: Ch 7.1 to 7.3, Ch 20.1 to 20.6 **RBT: L1, L2, L3** MODULE-5 No. of Hours:08 **Concurrency Control in Databases:** Two-phase locking techniques for Concurrency control, Concurrency control based on Timestamp ordering, Multiversion Concurrency control techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity Locking. **NOSQL Databases and Big Data Storage Systems:** Introduction to NOSQL Systems, The CAP Theorem, Document-Based NOSQL Systems and MongoDB, NOSQL Key-Value Stores, Column-Based or Wide Column NOSQL Systems, NOSQL Graph Databases and Neo4j **Textbook 1:Chapter 21.1 to 21.5, Chapter 24.1 to 24.6** **RBT: L1, L2, L3** # PRACTICAL COMPONENT OF IPCC (May cover all / major modules) | Sl.NO | Experiments | | | |----------|--|--|--| | 1 | Create a table called Employee & execute the following. | | | | | Employee(EMPNO,ENAME,JOB, MANAGER_NO, SAL, COMMISSION) | | | | | 1. Create a user and grant all permissions to theuser. | | | | | 2. Insert the any three records in the employee table contains attributes | | | | | EMPNO,ENAME JOB, MANAGER_NO, SAL, COMMISSION and use rollback. | | | | | Check the result. | | | | | 3. Add primary key constraint and not null constraint to the employee table. | | | | | 4. Insert null values to the employee table and verify the result. | | | | 2 | Create a table called Employee that contain attributes EMPNO,ENAME,JOB, MGR,SAL & | | | | | execute the following. | | | | | 1. Add a column commission with domain to the Employeetable. | | | | | 2. Insert any five records into the table. | | | | | 3. Update the column details of job | | | | | 4. Rename the column of Employ table using alter command. | | | | | 5. Delete the employee whose Empno is 105. | | | | 3 | Queries using aggregate functions(COUNT,AVG,MIN,MAX,SUM),Group by,Orderby. | | | | | Employee(E_id, E_name, Age, Salary) | | | | | 1. Create Employee table containing all Records E_id, E_name, Age, Salary. | | | | | 2. Count number of employee names from employeetable | | | | | 3. Find the Maximum age from employee table. | | | | | 4. Find the Minimum age from employeetable.5. Find salaries of employee in Ascending Order. | | | | | 6. Find grouped salaries of employees. | | | | 4 | Create a row level trigger for the customers table that would fire for INSERT or UPDATE or | | | | | DELETE operations performed on the CUSTOMERS table. This trigger will display the | | | | | salary difference between the old & new Salary. | | | | | CUSTOMERS(ID,NAME,AGE,ADDRESS,SALARY) | | | | 5 | Create cursor for Employee table & extract the values from the table. Declare the variables | | | | | Open the cursor & extrct the values from the cursor. Close the cursor. | | | | | Employee(E_id, E_name, Age, Salary) | | | | 6 | Write a PL/SQL block of code using parameterized Cursor, that will merge the data available | | | | | in the newly created table N_RollCall with the data available in the table O_RollCall. If the | | | | | data in the first table already exist in the second table then that data should be skipped. | | | | 7 | Install an Open Source NoSQL Data base MangoDB & perform basic CRUD(Create, Read, | | | | | Update & Delete) operations. Execute MangoDB basic Queries using CRUD operations. | | | | <u> </u> | automas (Course Chill Cot). | | | # **Course outcomes (Course Skill Set):** At the end of the course, the student will be able to: - Describe the basic elements of a relational database management system - Design entity relationship for the given scenario. - Apply various Structured Query Language (SQL) statements for database manipulation. - Analyse various normalization forms for the given application. - Develop database applications for the given real world problem. - Understand the concepts related to NoSQL databases. #### **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum @# 16032024 passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. #### CIE for the theory component of the IPCC (maximum marks 50) - IPCC means practical portion integrated with the theory of the course. - CIE marks for the theory component are 25 marks and that for the practical component is 25 marks. - 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 22OB4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus. - Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for 25 marks). - The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC. #### CIE for the practical component of the IPCC - 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for the test to be conducted after the completion of all the laboratory sessions. - On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day. - The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks. - The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks. - Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 25 marks. - The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. #### **SEE for IPCC** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours) - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions),
should have a mix of topics under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scoredby the student shall be proportionally scaled down to 50 Marks The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component. #### **Suggested Learning Resources:** #### **Text Books:** - 1. Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition, 2017, Pearson. - 2. Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning Mini Project: Project Based Learning | Analysis & Design of Algorithms Lab Semester | | 4 | | |---|---------|------------|----| | Course Code | BCSL404 | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 0:0:2:0 | SEE Marks | 50 | | Credits | 01 | Exam Hours | 2 | | Examination type (SEE) | Practi | ical | | - To design and implement various algorithms in C/C++ programming using suitable development tools to address different computational challenges. - To apply diverse design strategies for effective problem-solving. - To Measure and compare the performance of different algorithms to determine their efficiency and suitability for specific tasks. | fo | r specific tasks. | |-------|--| | Sl.No | Experiments | | 1 | Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given connected | | | undirected graph using Kruskal's algorithm. | | 2 | Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given connected | | | undirected graph using Prim's algorithm. | | 3 | a. Design and implement C/C++ Program to solve All-Pairs Shortest Paths problem using Floyd's | | | algorithm. | | | b. Design and implement C/C++ Program to find the transitive closure using Warshal's | | | algorithm. | | 4 | Design and implement C/C++ Program to find shortest paths from a given vertex in a weighted | | | connected graph to other vertices using Dijkstra's algorithm. | | 5 | Design and implement C/C++ Program to obtain the Topological ordering of vertices in a given | | | digraph. | | 6 | Design and implement C/C++ Program to solve 0/1 Knapsack problem using Dynamic | | | Programming method. | | 7 | Design and implement C/C++ Program to solve discrete Knapsack and continuous Knapsack | | | problems using greedy approximation method. | | 8 | Design and implement $C/C++$ Program to find a subset of a given set $S = \{sl, s2,,sn\}$ of n | | | positive integers whose sum is equal to a given positive integer d. | | 9 | Design and implement C/C++ Program to sort a given set of n integer elements using Selection Sort method and compute its time complexity. Run the program for varied values of n> 5000 and | | | record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read | | | from a file or can be generated using the random number generator. | | 10 | Design and implement C/C++ Program to sort a given set of n integer elements using Quick Sort | | | method and compute its time complexity. Run the program for varied values of n> 5000 and | | | record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read | | | from a file or can be generated using the random number generator. | | 11 | Design and implement C/C++ Program to sort a given set of n integer elements using Merge Sort | | | method and compute its time complexity. Run the program for varied values of n> 5000, and | | | record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read | | 12 | from a file or can be generated using the random number generator. | | 12 | Design and implement C/C++ Program for N Queen's problem using Backtracking. | | | | # **Course outcomes (Course Skill Set):** At the end of the course the student will be able to: - 1. Develop programs to solve computational problems using suitable algorithm design strategy. - 2. Compare algorithm design strategies by developing equivalent programs and observing running times for analysis (Empirical). - 3. Make use of suitable integrated development tools to develop programs - 4. Choose appropriate algorithm design techniques to develop solution to the computational and complex problems. - 5. Demonstrate and present the development of program, its execution and running time(s) and record the results/inferences. #### Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together # **Continuous Internal Evaluation (CIE):** CIE marks for the practical course are **50 Marks**. The split-up of CIE marks for record/journal and test are in the ratio **60:40**. - Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session. - Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. - Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks). - Weightage to be given for neatness and submission of record/write-up on time. - Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus. - In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce. - The suitable rubrics can be designed to evaluate each student's performance and learning ability. - The marks scored shall be scaled down to **20 marks** (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student. #### **Semester End Evaluation (SEE):** • SEE marks for the practical course are 50 Marks. # Template for Practical Course and if AEC is a practical Course Annexure-V - SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute. - The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University. - All laboratory experiments are to be included for practical examination. - (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. - Students can pick one question (experiment) from the questions lot prepared by the examiners jointly. - Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. - General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) - Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 02 hours # **Suggested Learning Resources:** • Virtual Labs (CSE): http://cse01-iiith.vlabs.ac.in/ | DISCRETE MATHEMATICAL STRUCTURES | | Semester | IV | |----------------------------------|---------|-------------|-----| | Course Code | BCS405A | CIE Marks | 50 | | Teaching Hours/Week (L:T:P:S) | 2:2:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | | Examination type (SEE) | Theory | 7 | | - 1. To help students to understand discrete and continuous mathematical structures. - 2. To impart basics of relations and functions. - 3. To facilitate students in applying principles of Recurrence Relations to find the generating functions and solve the Recurrence relations. - 4. To have the knowledge of groups and their properties to understand the importance of algebraic properties relative to various number systems. # **Teaching-Learning Process** # Pedagogy (General Instructions): These are sample Strategies, teachers can use to accelerate the attainment of the various course outcomes. - 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied Mathematical skills. - 2. State the need for Mathematics with Engineering Studies and Provide real-life examples. - 3. Support and guide the students for self–study. - 4. You will assign homework, grading assignments and quizzes, and documenting students' progress. - 5. Encourage the students to group learning to improve their
creative and analytical skills. - 6. Show short related video lectures in the following ways: - As an introduction to new topics (pre-lecture activity). - As a revision of topics (post-lecture activity). - As additional examples (post-lecture activity). - As an additional material of challenging topics (pre-and post-lecture activity). - As a model solution for some exercises (post-lecture activity). # **Module-1: Fundamentals of Logic** Basic Connectives and Truth Tables, Logic Equivalence – The Laws of Logic, Logical Implication – Rules of Inference. The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems. (8 hours) # (RBT Levels: L1, L2 and L3) # **Module-2: Properties of the Integers** Mathematical Induction, The Well Ordering Principle – Mathematical Induction, Recursive Definitions. **Fundamental Principles of Counting:** The Rules of Sum and Product, Permutations, Combinations – The Binomial Theorem, Combinations with Repetition. (8 Hours) #### (RBT Levels: L1, L2 and L3) #### **Module-3: Relations and Functions** Cartesian Products and Relations, Functions – Plain and One-to-One, Onto Functions. The Pigeonhole Principle, Function Composition and Inverse Functions. **Properties of Relations**, Computer Recognition – Zero-One Matrices and Directed Graphs, Partial Orders – Hasse Diagrams, Equivalence Relations and Partitions. (8 hours) #### (RBT Levels: L1, L2 and L3) #### Module-4: The Principle of Inclusion and Exclusion @# 16032024 The Principle of Inclusion and Exclusion, Generalizations of the Principle, Derangements – Nothing is in its Right Place, Rook Polynomials. **Recurrence Relations:** First Order Linear Recurrence Relation, The Second Order Linear Homogeneous Recurrence Relation with Constant Coefficients. (8 Hours) (RBT Levels: L1, L2 and L3) #### **Module-5: Introduction to Groups Theory** Definitions and Examples of Particular Groups Klein 4-group, Additive group of Integers modulo n, Multiplicative group of Integers modulo-p and permutation groups, Properties of groups, Subgroups, cyclic groups, Cosets, Lagrange's Theorem. (8 Hours) (RBT Levels: L1, L2 and L3) # Course outcome (Course Skill Set) At the end of the course, the student will be able to: - 1. Apply concepts of logical reasoning and mathematical proof techniques in proving theorems and statements. - 2. Demonstrate the application of discrete structures in different fields of computer science. - 3. Apply the basic concepts of relations, functions and partially ordered sets for computer representations. - 4. Solve problems involving recurrence relations and generating functions. - 5. Illustrate the fundamental principles of Algebraic structures with the problems related to computer science & engineering. # Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE, the minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. #### **Continuous Internal Evaluation:** - There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component. - Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks) The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks. The Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. #### **Semester-End Examination:** Theory SEE will be conducted by the University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - $3. \ \ \, \text{The students have to answer 5 full questions, selecting one full question from each module.}$ Marks scored shall be proportionally reduced to 50 marks #### **Suggested Learning Resources:** Books (Name of the author/Title of the Book/Name of the publisher/Edition and Year) Text Books: - 1. Ralph P. Grimaldi, B V Ramana: "Discrete Mathematical Structures an Applied Introduction", 5th Edition, Pearson Education, 2004. - **2. Ralph P. Grimaldi: "Discrete and Combinatorial Mathematics"**, 5th Edition, Pearson Education. 2004. #### **Reference Books:** - 1. Basavaraj S Anami and Venakanna S Madalli: "Discrete Mathematics A Concept-based approach", Universities Press, 2016 - **2. Kenneth H. Rosen: "Discrete Mathematics and its Applications"**, 6th Edition, McGraw Hill, 2007. - 3. **Jayant Ganguly: "A Treatise on Discrete Mathematical Structures",** Sanguine-Pearson, 2010. - 4. **D.S. Malik and M.K. Sen: "Discrete Mathematical Structures Theory and Applications,** Latest Edition, Thomson, 2004. - 5. **Thomas Koshy: "Discrete Mathematics with Applications"**, Elsevier, 2005, Reprint 2008. #### Web links and Video Lectures (e-Resources): - http://nptel.ac.in/courses.php?disciplineID=111 - http://www.class-central.com/subject/math(MOOCs) - http://academicearth.org/ - VTU e-Shikshana Program - VTU EDUSAT Program. - http://www.themathpage.com/ - http://www.abstractmath.org/ - http://www.ocw.mit.edu/courses/mathematics/ # Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning - Quizzes - Assignments - Seminar | METRIC SPACES | | Semester | IV | |--------------------------------|---------|-------------|-----| | Course Code | BAI405B | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 2:2:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | | Examination type (SEE) | Theory | | | - Provide insight into the theory of sets - Learn basic concepts of metric spaces - Understand the concepts of connected sets and compact spaces # **Teaching-Learning Process** # **Pedagogy (General Instructions):** These are sample Strategies, teachers can use to accelerate the attainment of the various course outcomes. - 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied Mathematical skills. - 2. State the need for Mathematics with Engineering Studies and Provide real-life examples. - 3. Support and guide the students for self–study. - 4. You will assign homework, grading assignments and quizzes, and documenting students' progress. - 5. Encourage the students to group learning to improve their creative and analytical skills. - 6. Show short related video lectures in the following ways: - As an introduction to new topics (pre-lecture activity). - As a revision of topics (post-lecture activity). - As additional examples (post-lecture activity). - As an additional material of challenging topics (pre-and post-lecture activity). - As a model solution for some exercises (post-lecture activity). # **Module-1: Theory of Sets** Finite and infinite sets, countable and uncountable sets, cardinality of sets, Schroder-Bernstein theorem, cantor's theorem, Order relation in cardinal numbers, Arithmetic of cardinal numbers, Partially ordered set, Zorn's lemma and axioms of choice, various set-theoretic paradoxes. (8 hours) #### (RBT Levels: L1, L2 and L3) | Teaching-Learning Process | Chalk and talk method / PowerPoint Presentation | |---------------------------|---| | | | # **Module-2: Concepts in Metric Spaces** Definition and examples of metric spaces, Open spheres and Closed spheres, Neighborhoods, Open sets, Interior, Exterior and boundary points, Closed sets, Limit points and isolated points, Interior and closure of a set, Boundary of a set, Bounded sets, Distance between two sets, Diameter of a set. (8 hours) #### (RBT Levels: L1, L2 and L3) | Teaching-Learning Process | Chalk and talk method / PowerPoint Presentation | | |---|---|--| | Module-3: Complete Metric Spaces and Continuous Functions | | | Cauchy and Convergent sequences, Completeness of metric spaces, Cantor's intersection theorem, Dense sets and separable spaces, Nowhere dense sets and Baire's category theorem, continuous and uniformly continuous functions, Homeomorphism. Banach contraction principle. (8 hours) # (RBT Levels: L1, L2 and L3) **Teaching-Learning Process** Chalk and talk method / PowerPoint Presentation #### **Module-4: Compactness** Compact spaces, Sequential compactness, Bolzano-Weierstrass property, Compactness and finite intersection property, Heine-Borel theorem, Totally bounded set, equivalence of compactness and sequential compactness. (8 hours) #### (RBT Levels: L1, L2 and L3) #### **Module-5: Connectedness**
Separated sets, Disconnected and connected sets, components, connected subsets of R, Continuous functions on connected sets. Local connectedness and arc-wise connectedness. (8 hours) # (RBT Levels: L1, L2 and L3) **Teaching-Learning Process** Chalk and talk method / PowerPoint Presentation # **Course outcome (Course Skill Set)** At the end of the course, the student will be able to: - 1. Explain basic facts about the cardinality of a set and various set-theoretic paradoxes. - 2. Apply the concepts of open and closed spheres and bounded sets to solve problems. - 3. Demonstrate standard concepts of metric spaces and their properties. - 4. Identify the continuity of a function defined on metric spaces and homomorphism. #### **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE, the minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. # **Continuous Internal Evaluation:** - There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component. - Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks - Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks) • The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. #### **Semester-End Examination:** Theory SEE will be conducted by the University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. Marks scored shall be proportionally reduced to 50 marks # **Suggested Learning Resources:** # Books (Name of the author/Title of the Book/Name of the publisher/Edition and Year) Text Books - 1. P.K. Jain & Khalil Ahamad, "Metric Spaces". Narosa, 2019. - 2. Micheal O; Searcoid, "Metric spaces". Springer-Verlag, 2009. #### **Reference Books:** - 1. Satish Shirali & Harikishan L. Vasudeva, "Metric Spaces", Springer-Verlag, 2006. - 2. E.T. Copson, "Metric spaces", Cambridge University Press, 1988. - 3. P.R. Halmos, "Naive Set Theory". Springer, 1974. - 4. S. Kumaresan, "Topology of Metric spaces", 2nd edition, Narosa, 2011. - 5. G.F. Simmons, "Introduction to Topology and Modern Analysis". McGraw-Hill, 2004. # Web links and Video Lectures (e-Resources): - http://nptel.ac.in/courses.php?disciplineID=111 - http://www.class-central.com/subject/math(MOOCs) - http://academicearth.org/ - VTU e-Shikshana Program - VTU EDUSAT Program. # Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning - Ouizzes - Assignments - Seminar | OPTIMIZATION TECHNIQUE | | Semester | IV | |--------------------------------|---------|-------------|-----| | Course Code | BCS405C | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 2:2:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | | Examination type (SEE) | Theory | | | **Course objectives:** The objectives of the course are to fecilitate the learners to: - Appreciate the importance of linear algebra in computer science and allied engineering science. - Gain the knowledge of linear algebra tools and concepts to implement them in their core domain. - Improve their mathematical thinking and acquire skills required for sustained lifelong learning. # **Teaching-Learning Process** # **Pedagogy (General Instructions):** These are sample Strategies, teachers can use to accelerate the attainment of the various course #### outcomes. - 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied Mathematical skills. - 2. State the need for Mathematics with Engineering Studies and Provide real-life examples. - 3. Support and guide the students for self–study. - 4. You will assign homework, grading assignments and quizzes, and documenting students' progress. - 5. Encourage the students to group learning to improve their creative and analytical skills. - 6. Show short related video lectures in the following ways: - As an introduction to new topics (pre-lecture activity). - As a revision of topics (post-lecture activity). - As additional examples (post-lecture activity). - As an additional material of challenging topics (pre-and post-lecture activity). - As a model solution of some exercises (post-lecture activity). # **Module-1: VECTOR CALCULUS** Functions of several variables, Differentiation and partial differentials, gradients of vector-valued functions, gradients of matrices, useful identities for computing gradients, linearization and multivariate Taylor series. # (8 hours) (RBT Levels: L1, L2 and L3) # **Module-2: APPLICATIONS OF VECTOR CALCULUS** Backpropagation and automatic differentiation, gradients in a deep network, The Gradient of Quadratic Cost, Descending the Gradient of Cost, The Gradient of Mean Squared Error. (8 hours) #### (RBT Levels: L1, L2 and L3) # **Module-3: Convex Optimization-1** @# 16032024 Local and global optima, convex sets and functions separating hyperplanes, application of Hessian matrix in optimization, Optimization using gradient descent, Sequential search 3-point search and Fibonacci search. (8 hours) (RBT Levels: L1, L2 and L3) # **Module-4: Convex Optimization-2** Unconstrained optimization -Method of steepest ascent/descent, NR method, Gradient descent, Mini batch gradient descent, Stochastic gradient descent. (8 hours) (RBT Levels: L1, L2 and L3) # **Module-5: Advanced Optimization** Momentum-based gradient descent methods: Adagrad, RMSprop and Adam. Non-Convex Optimization: Convergence to Critical Points, Saddle-Point methods. (8 hours) (RBT Levels: L1, L2 and L3) # **Course outcome (Course Skill Set)** At the end of the course, the student will be able to: - 1. Apply the concepts of vector calculus to solve the given problem. - 2. Apply the concepts of partial differentiation in machine learning and deep neural networks. - 3. Analyze the convex optimization algorithms and their importance in computer science & engineering. - 4. Apply the optimization algorithms to solve the problem. - 5. Analyze the advanced optimization algorithms for machine learning . # Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE, the minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. #### **Continuous Internal Evaluation:** - There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component. - Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks) - The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks. # Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. #### Semester-End Examination: Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. Marks scored shall be proportionally reduced to 50 marks. # **Suggested Learning
Resources:** # Books (Name of the author/Title of the Book/Name of the publisher/Edition and Year) #### Text Books: - 1. Mathematics for Machine learning, Marc Peter Deisennroth, A. Aldo Faisal, Cheng Soon Ong, 2020, Cambridge University Press. - 2. S. Bubeck, Convex Optimization: Algorithms and Complexity, Foundations and Trends in Optimization, 2015. - 3. S. Boyd, N. Parikh, and E. Chu, "Distributed optimization and statistical learning via the alternating direction method of multipliers", Foundations and Trends in Machine Learning, Now Publishers Inc. #### **Reference Books:** - **1.** Linear Algebra and Optimization for Machine Learning, Charu C. Aggarwal, Springer, 2020. - **2.** A. Beck, First-Order Methods in Optimization, MOS-SIAM Series on Optimization, 2017. - **3.** F. Bach, "Learning with Submodular Functions: A Convex Optimization Perspective", Foundations and Trends in Machine Learning, Now Publishers Inc. # Web links and Video Lectures (e-Resources): - https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm - https://www.math.ucdavis.edu/~linear/linear.pdf - https://www.coursera.org/learn/linear-algebra-machine-learning - https://nptel.ac.in/syllabus/111106051/ - https://github.com/epfml/OptML course - https://www.youtube.com/playlist?list=PL4O4bXkI-fAeYrsBqTUYn2xMjJAqlFQzX # Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning - Quizzes - Assignments - Seminar | ALGORITHMIC GAME THEORY | | Semester | IV | |--------------------------------|---------|-------------|-----| | Course Code | BAI405D | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 2:2:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | | Examination type (SEE) | Theory | | | - Comprehend the basics of strategic gaming and mixed strategic equilibrium. - Enable students to develop skills on extensive gaming strategies. - Analyze and discuss various gaming models. - Illustrate some real-time situations. # **Teaching-Learning Process** # **Pedagogy (General Instructions):** These are sample Strategies, teachers can use to accelerate the attainment of the various course outcomes. - 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied Mathematical skills. - 2. State the need for Mathematics with Engineering Studies and Provide real-life examples. - 3. Support and guide the students for self–study. - 4. You will assign homework, grading assignments and quizzes, and documenting students' progress. - 5. Encourage the students to group learning to improve their creative and analytical skills. - 6. Show short related video lectures in the following ways: - As an introduction to new topics (pre-lecture activity). - As a revision of topics (post-lecture activity). - As additional examples (post-lecture activity). - As an additional material of challenging topics (pre-and post-lecture activity). - As a model solution for some exercises (post-lecture activity). #### Module-1 **Introduction to Strategic Games:** What is game theory? The theory of rational choice, Strategic games; Examples: The prisoner's dilemma, Bach or Stravinsky, Matching pennies; Nash equilibrium; Examples of Nash equilibrium; Best response functions; Dominated actions. (8 hours) #### (RBT Levels: L1, L2 and L3) | Feaching-Learning Process Chalk and talk method / PowerPoint Presentation | | | | | |---|----------|--|--|--| | | Module-2 | | | | | Introduction; Strategic games in which players may randomize; Mixed strategy Nash equilibrium; Dominated actions; Pure equilibrium when randomization is allowed. Illustration: Expert Diagnosis; Equilibrium in a single population. (8 hours) (RBT Levels: L1, L2 and L3) | | | | | | Teaching-Learning Process Chalk and talk method / PowerPoint Presentation | | | | | | Module-3 | | | | | @# 16032024 Extensive games with perfect information; Strategies and outcomes; Nash equilibrium; Subgame perfect equilibrium; Finding sub-game perfect equilibria of finite horizon games: Backward induction; Illustrations: The ultimatum game, Stackelberg's model of duopoly. (8 hours) (RBT Levels: L1, L2 and L3) **Teaching-Learning Process** Chalk and talk method / PowerPoint Presentation #### Module-4 Bayesian Games, Motivational examples; General definitions; Two examples concerning information; Illustrations: Cournot's duopoly game with imperfect information, Providing a public good; Auctions: Auctions with an arbitrary distribution of valuations. (8 hours) (RBT Levels: L1, L2 and L3) **Teaching-Learning Process** Chalk and talk method / PowerPoint Presentation #### **Module-5** Competative Games: Strictly competitive games and maximization. **Repeated games:** The main idea; Preferences; Repeated games; Finitely and infinitely repeated Prisoner's dilemma; Strategies in an infinitely repeated Prisoner's dilemma; Nash equilibrium of an infinitely repeated Prisoner's dilemma, Nash equilibrium payoffs of an infinitely repeated Prisoner's dilemma. (8 hours) (RBT Levels: L1, L2 and L3) Teaching-Learning Process Chalk and talk method / PowerPoint Presentation # **Course outcome (Course Skill Set)** At the end of the course, the student will be able to: - 1. Interpret the basics of strategic gaming and extensive games. - 2. Analyze gaming strategies on real-time incidence. - 3. Develop the models of gaming on real-time incidence. - 4. Apply game theory in the real world problems. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE, the minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. # **Continuous Internal Evaluation:** - There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component. - Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks - Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks) - The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. #### **Semester-End Examination:** Theory SEE will be conducted by the University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. Marks scored shall be proportionally reduced to 50 marks # **Suggested Learning Resources:** Books (Name of the author/Title of the Book/Name of the publisher/Edition and Year) Text Books: 1. **Martin Osborne: "An Introduction to Game Theory",** Oxford University Press, First Indian Edition, 2009, 7th impression, ISBN – 0195128958. #### **Reference Books:** - 1. **Roger B. Myerson: "Analysis of Conflict Game Theory",** Re-print Edition, Harvard University Press, 2008, ISBN 978-0674341166. - 2. Frederick S. Hillier and Gerald J. Lieberman: "Introduction to Operations Research, Concepts and Cases", 9th Edition; Tata McGraw Hill, 2010, ISBN 0073376299. - 3. **Joel Watson: "An Introduction to Game Theory"** Strategy, 2nd Edition, W.W. Norton & Company, 2007, ISBN 9780393929348. #### Web links and Video Lectures (e-Resources): - http://nptel.ac.in/courses.php?disciplineID=111 - http://www.class-central.com/subject/math(MOOCs) - http://academicearth.org/ - VTU e-Shikshana Program - VTU EDUSAT Program. # Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning - Quizzes - Assignments - Seminar | Scala | | Semester | 4 | |--------------------------------|-----------|------------|----| | Course Code | BDSL456A | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 0:0:2:0 | SEE Marks | 50 | | Credits | 01 | Exam Hours | 02 | | Examination type (SEE) | Practical | | | - Model data using algebraic data types, represented in Scala as families of sealed traits and case classes. - Use structural recursion and pattern matching to traverse and transform data. - Learn programming with the common data structures of Scala - Learn object-oriented programming in Scala | Sl.NO | | Experiments | | | | | |-------|---
---|--|--|--|--| | 1 | a. | Write a Scala program to compute the sum of the two given integer values. If the two values are the | | | | | | | | same, then return triples their sum. | | | | | | | b. | b. Write a Scala program to check two given integers, and return true if one of them is 22 or if their sum is | | | | | | | | 32. | | | | | | 2 | a. | Write a Scala program to remove the character in a given position of a given string. The given position | | | | | | | | will be in the range 0string length -1 inclusive. | | | | | | | b. | Write a Scala program to create a new string taking the first 5 characters of a given string and return | | | | | | | | the string with the 5 characters added at both the front and back. | | | | | | 3 | a. | Write a Scala program to print the multiplication table of a given number using a for loop. | | | | | | | b. | Write a Scala program to find the largest element in an array using pattern matching | | | | | | 4 | a. | a. Write a Scala function to calculate the product of digits in a given number | | | | | | | b. | Write a Scala function to check if a given number is a perfect square | | | | | | 5 | a. | a. Write a Scala program that creates a subclass Student that extends the Person class. Add a property | | | | | | | | called grade and implement methods to get and set it. | | | | | | | b. Write a Scala program that creates a class Triangle with properties side1, side2, and side3. Implement a | | | | | | | | | method isEquilateral to check if the triangle is equilateral. | | | | | | 6 | a. | 1 6 | | | | | | | | class to represent an object's color. | | | | | | | b. | b. Write a Scala program that creates a class ContactInfo with properties name, email, and address. Create | | | | | | | a class Customer that includes a ContactInfo object. | | | | | | | 7 | a. | Write a Scala program to create a set and find the difference and intersection between two sets. | | | | | | | b. | Write a Scala program to create a set and find the second largest element in the set. | | | | | | 8 | a. | Write a Scala program to create a list in different ways. | | | | | | | 1. | Note: Use Lisp style, Java style, Range list, Uniform list, Tabulate list | | | | | | | b. | Write a Scala program to flatten a given List of Lists, nested list structure. | | | | | | 9 | a. | Write a Scala program to add each element n times to a given list of integers. | | | | | | | b. | Write a Scala program to split a given list into two lists. | | | | | | 10 | a. | Write a Scala program to swap the elements of a tuple Further print no swapping required if elements | | | | | | | , | are same. | | | | | | | b. | Write a Scala program to find non-unique elements in a tuple | | | | | # **Course outcomes (Course Skill Set):** At the end of the course the student will be able to: - Get familiar with the Scala syntax and object-oriented principles - Learn advanced concepts loops, expressions, inheritance, pattern matching - Learn to write clean and functional Scala codes and test it - Learn functional programming using Scala # Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together # **Continuous Internal Evaluation (CIE):** CIE marks for the practical course are **50 Marks**. The split-up of CIE marks for record/journal and test are in the ratio **60:40**. - Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session. - Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. - Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks). - Weightage to be given for neatness and submission of record/write-up on time. - Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus. - In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce. - The suitable rubrics can be designed to evaluate each student's performance and learning ability. - The marks scored shall be scaled down to **20 marks** (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student. #### **Semester End Evaluation (SEE):** - SEE marks for the practical course are 50 Marks. - SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute. - The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University. - All laboratory experiments are to be included for practical examination. - (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. - Students can pick one question (experiment) from the questions lot prepared by the examiners jointly. - Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. - General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) - Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 02 hours # **Suggested Learning Resources:** - Programming Scala, Third Edition, O'Reilly Media. - Paul Chiusano, Rúnar Bjarnason, Functional Programming in Scala 1st Edition, Manning Publications - https://docs.scala-lang.org/tutorials/scala-for-java-programmers.html - https://www.javatpoint.com/scala-tutorial | MongoDB Semester | | | 4 | | | |--|---|---|-----------------------------|------------|--| | Course | Code | BDSL456B | CIE Marks | 50 | | | | ng Hours/Week (L: T:P: S) | 0:0:2:0 | SEE Marks | 50 | | | Total Hours of Pedagogy 24 Total Marks | | | 100 | | | | | Credits 01 | | | | | | Course | e objectives: | | · W DD | | | | • | _ | nctions, operators and types of operatio | ns in MongodB. | | | | • | | g, Advanced Indexing in MongoDB. | | | | | • | Apply the aggregation and Map | _ | | | | | • | Demonstrate text searching on | = | | | | | Sl.NO | TIL CAN C | Experiments | | | | | 1 | | lause, AND,OR operations in MongoDB. | | D. 1. | | | | | s of MongoDB and operations in MongoD |)B : Insert, Query, Update | , Delete | | | | and Projection. (Note: 1 | ise any collection) | | | | | | [Refer: Book 1 chapter 4]. | | | | | | 2 | | uery to select certain fields and ignore | some fields of the docum | ients from | | | | any collection. | | | | | | | | uery to display the first 5 documents fro | m the results obtained in | a. | | | | [use of limit and find] | | | | | | | [Refe: Book1 Chapter 4, book 2: | | | | | | 3 | | rs (comparison selectors, logical selecto | ors) and list out the resu | lts on any | | | | collection | | | _ | | | | 1 | rs (Geospatial selectors, Bitwise selecto | rs) and list out the resu | lts on any | | | | collection | | | | | | | [Refer: Book 3 Chapter 13] | | | | | | 4 | 4 Create and demonstrate how projection operators (\$, \$elematch and \$slice) would be used in the | | | ed in the | | | | MondoDB. | | | | | | | [Refer: Book 3 Chapter 14] | | | | | | 5 | | s (\$avg, \$min,\$max, \$push, \$addToSet e | etc.). students encourage | to execute | | | | _ | various aggregation operators) | | | | | | [Refer: Book 3 Chapter 15] | | | | | | 6 | | and its operations (pipeline must conta | | | | | | \$skip etc. students encourage to execute several queries to demonstrate various aggregation operators) | | | | | | | [refer book 2: chapter 6] | | | | | | 7 | a. Find all listings with | listing_url, name, address, host_pictur | e_url in the listings And | d Reviews | | | | collection that have a h | ost with a picture url | | | | | | b. Using E-commerce coll | ection write a query to display reviews | summary. | | | | | [refer Book2: chapter 6] | | | | | | 8 | a. Demonstrate creation | of different types of indexes on collecti | on (unique, sparse, com | ound and | | | | multikey indexes) | | | | | | | 1 | ion of queries using indexes. | | | | | | Refer: Book 2: Chapter 8 and Bo | | | | | | | Refer. Book 2. Gliapter o and Book 3. Gliapter 12] | | | | | | 9 | a. Develop a query to der | nonstrate Text search using catalog data | a collection for a given wo | ord | | | | b. Develop queries to illustrate excluding documents with certain words and phrases | | | | | | | Refer: Book 2: Chapter 9] | | | | | | |
| | | | | 10 Develop an aggregation pipeline to illustrate Text search on Catalog data collection. Refer: Book 2 :Chapter 9] #### **Course outcomes (Course Skill Set):** At the end of the course the student will be able to: - 1. Make use of MangoDB commands and queries. - 2. Illustrate the role of aggregate pipelines to extract data. - 3. Demonstrate optimization of queries by creating indexes. - 4. Develop aggregate pipelines for text search in collections. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together #### **Continuous Internal Evaluation (CIE):** CIE marks for the practical course are **50 Marks**. The split-up of CIE marks for record/journal and test are in the ratio **60:40**. - Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session. - Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. - Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks). - Weightage to be given for neatness and submission of record/write-up on time. - Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus. - In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce. - The suitable rubrics can be designed to evaluate each student's performance and learning ability. - The marks scored shall be scaled down to **20 marks** (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student. #### **Semester End Evaluation (SEE):** - SEE marks for the practical course are 50 Marks. - SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute. - The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University. # Template for Practical Course and if AEC is a practical Course Annexure-V - All laboratory experiments are to be included for practical examination. - (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. - Students can pick one question (experiment) from the questions lot prepared by the examiners jointly. - Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. - General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 02 hours # **Suggested Learning Resources:** - **BOOK 1:** "MongoDB: The Definitive Guide", Kristina chodorow, 2nd ed O'REILLY, 2013. - **BOOK 2:** "MongoDB in Action" by KYLE BANKER et. al. 2nd ed, Manning publication, 2016 - **BOOK 3:** "MongoDB Complete Guide" by Manu Sharma 1st ed, bpb publication, 2023. - installation of MongoDB Video: https://www.youtube.com/watch?v=dEm2AS5amyA - **video on Aggregation:** https://www.youtube.com/watch?v=vx1C8EyTa7Y - MongoDB in action book Code download URL: https://www.manning.com/downloads/529 - MongoDB Exercise URL: https://www.w3resource.com/mongodb-exercises/ | MERN | | Semester | 4 | |--------------------------------|----------|------------|----| | Course Code | BDSL456C | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 0:0:2:0 | SEE Marks | 50 | | Credits | 01 | Exam Hours | 02 | | Examination type (SEE) | Pract | tical | | - Understand and apply critical web development languages and tools to create dynamic and responsive web applications. - To build server-side applications using Node.js and Express - Develop user interfaces with React.js, - Manage data using MongoDB, and integrate these technologies to create full stack apps - Understanding APIs and routing. | | Francoise and a founding. | | | | |-------|---|--|--|--| | Sl.NO | Experiments | | | | | 1 | Using MongoDB, create a collection called transactions in database usermanaged (drop if it already exists) | | | | | | and bulk load the data from a json file, transactions.json | | | | | | Upsert the record from the new file called transactions_upsert.json in Mongodb. | | | | | 2 | Query MongoDB with Conditions: [Create appropriate collection with necessary documents to answer the | | | | | | query] | | | | | | a. Find any record where Name is Somu | | | | | | b. Find any record where total payment amount (Payment.Total) is 600. | | | | | | c. Find any record where price (Transaction.price) is between 300 to 500. | | | | | | d. Calculate the total transaction amount by adding up Payment. Total in all records. | | | | | 3 | a. Write a program to check request header for cookies. | | | | | | b. write node.js program to print the a car object properties, delete the second property and get length of | | | | | | the object. | | | | | 4 | a. Read the data of a student containing usn, name, sem, year_of_admission from node js and store it in | | | | | | the mongodb | | | | | | b. For a partial name given in node js, search all the names from mongodb student documents created in | | | | | | Question(a) | | | | | 5 | I I I I COMP II PI C I I N I I C | | | | | | Implement all CRUD operations on a File System using Node JS | | | | | 6 | Develop the application that sends fruit name and price data from client side to Node.js server using Ajax | | | | | | Develop the application that sends if the name and price data from chefit side to Node.js server using Ajax | | | | | | | | | | | 7 | Develop an authentication mechanism with email_id and password using HTML and Express JS (POST | | | | | | method) | | | | | 8 | Develop two routes: find_prime_100 and find_cube_100 which prints prime numbers less than 100 and | | | | | | cubes less than 100 using Express JS routing mechanism | | | | | | | | | | | 9 | Develop a React code to build a simple search filter functionality to display a filtered list based on the | | | | | | search query entered by the user. | | | | | 10 | Develop a React code to collect data from rest API. | | | | | | | | | | | | | | | | # **Course outcomes (Course Skill Set):** At the end of the course the student will be able to: - Apply the fundamentals of MongoDB, such as data modelling, CRUD operations, and basic queries to solve given problem. - Use constructs of Express.js, including routing, software and constructing RESTful APIs to solve real world problems. - Develop scalable and efficient RESTful APIs using NodeJS. - Develop applications using React, including components, state, props, and JSX syntax. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together # **Continuous Internal Evaluation (CIE):** CIE marks for the practical course are **50 Marks**. The split-up of CIE marks for record/journal and test are in the ratio **60:40**. - Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session. - Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. - Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks). - Weightage to be given for neatness and submission of record/write-up on time. - Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus. - In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce. - The suitable
rubrics can be designed to evaluate each student's performance and learning ability. - The marks scored shall be scaled down to **20 marks** (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student. # **Semester End Evaluation (SEE):** - SEE marks for the practical course are 50 Marks. - SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute. - The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University. - All laboratory experiments are to be included for practical examination. - (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. - Students can pick one question (experiment) from the questions lot prepared by the examiners jointly. - Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. - General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) - Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 02 hours # **Suggested Learning Resources:** - Vasan SubramanianPro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Apress; 1st ed. edition (1 April 2017) - Eddy Wilson Iriarte Koroliova, MERN Quick Start Guide, Packt Publishing (31 May 2018), - https://www.geeksforgeeks.org/mern-stack/ - https://blog.logrocket.com/mern-stack-tutorial/ | J | ulia | Semester | 4 | |---------------------------------|----------|-------------|-----| | Course Code | BDSL456D | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 0:0:2:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 24 | Total Marks | 100 | | Credits | 01 | | | - To introduce the basics of Julia programming language - To illustrate the data structures of Julia programming language - To make use of built-in functions and packages | | To make use of built-in functions and packages | |-------|--| | Sl.NO | Experiments | | 1 | a. Develop a Julia program to simulate a calculator (for integer and real numbers). | | | b. Develop a Julia program to add, subtract, multiply and divide complex numbers. | | | c. Develop a Julia program to evaluate expressions having mixed data types (integer, real, floating-point | | | number and complex). | | | [Refer Book 2: Chapter 3, 4] | | 2 | a. Develop a Julia program for the following problem: A computer repair shop charges \$100 per hour for labour plus the cost of any parts used in the repair. However, the minimum charge for any job is \$150. Prompt for the number of hours worked and the cost of parts (which could be \$0) and print the charge for the job. | | | b. Develop a Julia program to calculate a person's regular pay, overtime pay and gross pay based on the | | | following: If hours worked is less than or equal to 40, regular pay is calculated by multiplying hours | | | worked by rate of pay, and overtime pay is 0. If hours worked is greater than 40, regular pay is | | | calculated by multiplying 40 by the rate of pay, and overtime pay is calculated by multiplying the hours | | | in excess of 40 by the rate of pay by 1.5. Gross pay is calculated by adding regular pay and overtime pay. | | | [Refer Book 1: Chapter 3] | | 3 | a. An amount of money P (for principal) is put into an account which earns interest at r% per annum. So, at the end of one year, the amount becomes P + P×r/100. This becomes the principal for the next year. Develop a Julia program to print the amount at the end of each year for the next 10 years. However, if the amount ever exceeds 2P, stop any further printing. Your program should prompt for the values of P and r. | | | b. Develop a Julia program which reads numbers from a file (input.txt) and finds the largest number, | | | smallest number, count, sum and average of numbers. | | | [Refer Book 1: Chapter 4] | | 4 | a. Develop a Julia program and two separate functions to calculate GCD and LCM. | | | b. Develop a Julia program and a recursive function to calculate factorial of a number. | | | c. Develop a Julia program and a recursive function to generate Fibonacci series. | | | [Refer Book 1: Chapter 5] | | 5 | a. Develop a Julia program which reads a string (word) and prints whether the word is palindrome. | | | b. Develop a Julia program which reads and prints the words present in a file (input.txt) having Random | | | Data in which words are dispersed randomly (Assumption: a word is a contiguous sequence of letters. | | | A word is delimited by any non-letter character or end-of-line). | | | [Refer Book 1: Chapter 6] | | 6 | a. Develop a Julia program to determine and print the frequency with which each letter of the alphabet is used in a given line of text. | | | b. A survey of 10 pop artists is made. Each person votes for an artist by specifying the number of the artist | | | (a value from 1 to 10). Develop a Julia program to read the names of the artists, followed by the votes, | | | and find out which artist is the most popular. | | | [Refer Book 1: Chapter 7] | # Template for Practical Course and if AEC is a practical Course Annexure-V | 7 | a. Given a line of text as input, develop a Julia program to determine the frequency with which each letter of the alphabet is used (make use of dictionary) b. Develop a Julia program to fetch words from a file with arbitrary punctuation and keep track of all the different words found (make use of set and ignore the case of the letters: e.g. to and To are treated as the same word). [Refer Book 1: Chapter 10] | |----|---| | 8 | a. Develop a Julia program to evaluate expressions consisting of rational, irrational number and floating-point numbers) b. Develop a Julia program to determine the following properties of a matrix: determinant, inverse, rank, upper & lower triangular matrix, diagonal elements, Euclidean norm and Square Root of a Matrix. [Refer Book 2: Chapter 5, 8] | | 9 | a. Develop a Julia program to determine addition and subtraction of two matrices (element -wise). b. Develop a Julia program to perform multiplication operation on matrices: scalar multiplication, element-wise multiplication, dot product, cross product. [Refer Book 2: Chapter 8] | | 10 | a. Develop a Julia program to generate a plot of (solid & dotted) a function: y=x² (use suitable data points for x). b. Develop a Julia program to generate a plot of mathematical equation: y = sin(x) + sin(2x). c. Develop a Julia program to generate multiple plots of mathematical equations: y = sin(x) + sin(2x) and y = sin(2x) + sin(3x). [Refer Book 2: Chapter 13] | # Course outcomes (Course Skill Set): At the end of the course the student will be able to: - Apply concepts of data-types, selection and looping constructs of Julia programming language. - Demonstrate the use of strings, functions, arrays and matrix operations in solving problems. - Develop programs involving data structures to handle multi-valued data items. - Make use of packages to generate plots of mathematical functions and equations. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together #### **Continuous Internal Evaluation (CIE):** CIE marks for the practical course are **50 Marks**. The split-up of CIE marks for record/journal and test are in the ratio **60:40**. - Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session. - Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. -
Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks). - Weightage to be given for neatness and submission of record/write-up on time. - Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus. - In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce. - The suitable rubrics can be designed to evaluate each student's performance and learning ability. - The marks scored shall be scaled down to **20 marks** (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student. #### **Semester End Evaluation (SEE):** - SEE marks for the practical course are 50 Marks. - SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute. - The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University. - All laboratory experiments are to be included for practical examination. - (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. - Students can pick one question (experiment) from the questions lot prepared by the examiners iointly. - Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. - General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and # Template for Practical Course and if AEC is a practical Course Annexure-V result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 02 hours # **Suggested Learning Resources:** - **BOOK 1:** Julia Bit by Bit (Programming for Beginners), by Noel Kalicharan, Springer: ISBN 978-3-030-73935-5, doi: https://doi.org/10.1007/978-3-030-73936-2, 2021. - **BOOK 2:** Beginning Julia Programming (For Engineers and Scientists), by Sandeep Nagar, Apress-Springer: ISBN 978-1-4842-3170-8, doi: https://doi.org/10.1007/978-1-4842-3171-5, 2017. | Software Engineering & | & Project Management | Semester | V | |--------------------------------|----------------------|-------------|-----| | Course Code | BCS501 | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 4:0:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 52 hours | Total Marks | 100 | | Credits | 04 | Exam Hours | 03 | | Examination nature (SEE) | Theor | ry | | This course will enable students to, - Outline software engineering principles and activities involved in building large software programs. Identify ethical and professional issues and explain why they are of concern to Software Engineers. - Describe the process of requirement gathering, requirement classification, requirement specification and requirements validation. - Recognize the importance of Project Management with its methods and methodologies. - Identify software quality parameters and quantify software using measurements and metrics. List software quality standards and outline the practices involved. # **Teaching-Learning Process (General Instructions)** These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) need not be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - 5. Adopt Problem Based-Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it. MODULE-1 10 hours **Software and Software Engineering**: The nature of Software, The unique nature of WebApps, Software Engineering, The software Process, Software Engineering Practice, Software Myths. **Process Models:** A generic process model, Process assessment and improvement, Prescriptive process models: Waterfall model, Incremental process models, Evolutionary process models, Concurrent models, Specialized process models. Unified Process, Personal and Team process models #### Textbook 1: Chapter 1: 1.1 to 1.6, Chapter 2: 2.1 to 2.5 MODULE-2 12 hours **Understanding Requirements**: Requirements Engineering, Establishing the ground work, Eliciting Requirements, Developing use cases, Building the requirements model, Negotiating Requirements, Validating Requirements. **Requirements Modeling Scenarios, Information and Analysis classes**: Requirement Analysis, Scenario based modeling, UML models that supplement the Use Case, Data modeling Concepts, Class-Based Modeling. Requirement Modeling Strategies: Flow oriented Modeling, Behavioral Modeling. Textbook 1: Chapter 5: 5.1 to 5.7, Chapter 6: 6.1 to 6.5, Chapter 7: 7.1 to 7.3 MODULE-3 10 hours **Agile Development:** What is Agility?, Agility and the cost of change. What is an agile Process?, Extreme Programming (XP), Other Agile Process Models, A tool set for Agile process. **Principles that guide practice:** Software Engineering Knowledge, Core principles, Principles that guide each framework activity. Textbook 1: Chapter 3: 3.1 to 3.6, Chapter 4: 4.1 to 4.3 MODULE-4 10 hours **Introduction to Project Management:** Introduction, Project and Importance of Project Management, Contract Management, Activities Covered by Software Project Management, Plans, Methods and Methodologies, Some ways of categorizing Software Projects, Stakeholders, Setting Objectives, Business Case, Project Success and Failure, Management and Management Control, Project Management life cycle, Traditional versus Modern Project Management Practices. **Project Evaluation:** Evaluation of Individual projects, Cost-benefit Evaluation Techniques, Risk Evaluation Textbook 2: Chapter 1: 1.1 to 1.17, Chapter 2: 2.4 to 2.6 MODULE-5 10 hours **Software Quality:** Introduction, The place of software quality in project planning, Importance of software quality, Defining software quality, Software quality models, product versus process quality management. **Software Project Estimation:** Observations on Estimation, Decomposition Techniques, Empirical Estimation Models. Textbook 2: Chapter 13: 13.1 to 13.5, 13.7, 13.8, Text Book 1: Chapter 26: 26.5 to 26.7 ## **Course Outcomes** At the end of the course, the student will be able to: - **Differentiate** process models to judge which process model has to be adopted for the given scenarios. - **Derive** both functional and nonfunctional requirements from the case study. - **Analyze** the importance of various software testing methods and agile methodology. - **Illustrate** the role of project planning and quality management in software development. - **Identify** appropriate techniques to enhance software quality. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. #### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. • For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. The Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ## **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. Marks scored shall be proportionally reduced to 50 marks. . ### **Suggested Learning Resources:** ### **Textbooks** - 1. Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw Hill. - 2. Bob Hughes, Mike Cotterell, Rajib Mall: Software Project Management, 6th Edition, McGraw Hill Education, 2018. ### Reference Book: - 3. Pankaj Jalote: An
Integrated Approach to Software Engineering, Wiley India. - 4. "Software Engineering: Principles and Practice", Hans van Vliet, Wiley India, 3rd Edition, 2010. ## Web links and Video Lectures (e-Resources): - https://onlinecourses.nptel.ac.in/noc20_cs68/preview - https://onlinecourses.nptel.ac.in/noc24 mg01/preview ### Activity Based Learning (Suggested Activities in Class)/Practical-Based Learning - Demonstration of Agile tool: The students are expected to learn any of the popular agile tool. (10 marks) - Field Survey (In Team): The students' team may of the size of 2 or 4. Students are expected to visit their library and understand the Library Automation Software. **OR** they have to understand the working of ERP or any inventory management, and then they have to prepare a report and then to be submitted to the concerned staff. Prepare a document/report which includes all the phases of SDLC and to be submitted accordingly (15 marks) | COMPUT | Semester | V | | |---|----------------------------------|-------------|-----| | Course Code | BCS502 | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 3:0:2:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 hours Theory + 8-10 Lab slots | Total Marks | 100 | | Credits | 04 | Exam Hours | 03 | | Examination nature (SEE) Theory/practical | | | | This course will enable students to, - Study the TCP/IP protocol suite, switching criteria and Medium Access Control protocols for reliable and noisy channels. - Learn network layer services and IP versions. - Discuss transport layer services and understand UDP and TCP protocols. - Demonstrate the working of different concepts of networking layers and protocols. ### **Teaching-Learning Process (General Instructions)** These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it. # **MODULE-1** Introduction: Data Communications, Networks, Network Types, Networks Models: Protocol Layering, TCP/IP Protocol suite, The OSI model, Introduction to Physical Layer: Transmission media, Guided Media, Unguided Media: Wireless. Switching: Packet Switching and its types. **Textbook:** Ch. 1.1 - 1.3, 2.1 - 2.3, 7.1 – 7.3, 8.3. ### **MODULE-2** Data Link Layer: Error Detection and Correction: Introduction, Block Coding, Cyclic Codes. Data link control: DLC Services: Framing, Flow Control, Error Control, Connectionless and Connection Oriented, Data link layer protocols, High Level Data Link Control. Media Access Control: Random Access, Controlled Access. Check Sum and Point to Point Protocol **Textbook:** Ch. 10.1-10.4, 11.1 -11.4, 12.1 - 12.2 ### **MODULE-3** Network Layer: Network layer Services, Packet Switching, IPv4 Address, IPv4 Datagram, IPv6 Datagram, Introduction to Routing Algorithms, Unicast Routing Protocols: DVR, LSR, PVR, Unicast Routing protocols: RIP, OSPF, BGP, Multicasting Routing-MOSPF **Textbook:** Ch. 18.1, 18.2, 18.4, 22.2,20.1-20.3, 21.3.2 ## **MODULE-4** Introduction to Transport Layer: Introduction, Transport-Layer Protocols: Introduction, User Datagram Protocol, Transmission Control Protocol: services, features, segments, TCP connections, flow control, Error control, Congestion control. **Textbook:** Ch. 23.1-23.2, 24.1-24.3.4, 24.3.6-24.3.9 ### **MODULE-5** @#@#@ 1 12082024 Introduction to Application Layer: Introduction, Client-Server Programming, Standard Client-Server Protocols: World Wide Web and HTTP, FTP, Electronic Mail, Domain Name System (DNS), TELNET, Secure Shell (SSH) **Textbook:** Ch. 25.1-25.2, 26.1-26.6 ### PRACTICAL COMPONENT OF IPCC | Sl.NO | Experiments | | |-------|---|--| | 1 | Implement three nodes point – to – point network with duplex links between them. Set the | | | | queue size, vary the bandwidth, and find the number of packets dropped. | | | 2 | Implement transmission of ping messages/trace route over a network topology consisting of 6 | | | | nodes and find the number of packets dropped due to congestion. | | | 3 | Implement an Ethernet LAN using n nodes and set multiple traffic nodes and plot congestion | | | | window for different source / destination. | | | 4 | Develop a program for error detecting code using CRC-CCITT (16- bits). | | | 5 | Develop a program to implement a sliding window protocol in the data link layer. | | | 6 | 6 Develop a program to find the shortest path between vertices using the Bellman-Ford and p | | | | vector routing algorithm. | | | 7 | Using TCP/IP sockets, write a client – server program to make the client send the file name | | | | and to make the server send back the contents of the requested file if present. | | | 8 | Develop a program on a datagram socket for client/server to display the messages on client | | | | side, typed at the server side. | | | 9 | Develop a program for a simple RSA algorithm to encrypt and decrypt the data. | | | 10 | Develop a program for congestion control using a leaky bucket algorithm. | | # **Course outcomes (Course Skill Set):** At the end of the course, the student will be able to: - **Explain** the fundamentals of computer networks. - **Apply** the concepts of computer networks to demonstrate the working of various layers and protocols in communication network. - Analyze the principles of protocol layering in modern communication systems. - **Demonstrate** various Routing protocols and their services using tools such as Cisco packet tracer. Note: For the Simulation experiments modify the topology and parameters set for the experiment and take multiple rounds of reading and analyze the results available in log files. Plot necessary graphs and conclude using NS2 or NS3. Installation procedure of the required software must be demonstrated, carried out in groups, and documented in the report. Non simulation programs can be implemented using Java. ## **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. # CIE for the theory component of the IPCC (maximum marks 50) - IPCC means practical portion integrated with the theory of the course. - CIE marks for the theory component are 25 marks and that for the practical component is 25 marks. - 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus. - Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**). - The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC. # CIE for the practical component of the IPCC - **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions. - On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day. - The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**. - The laboratory test **(duration 02/03 hours)** after completion of all the experiments shall be conducted for 50 marks and scaled down to **10 marks**. - Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **25 marks**. - The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. ## **SEE for IPCC** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**) - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scoredby the student shall be proportionally scaled down to 50 Marks The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component. ## **Suggested Learning Resources:** ## **Textbook:** 1. Behrouz A. Forouzan, Data Communications and Networking,
5th Edition, Tata McGraw- @#@#@ 3 12082024 # Hill,2013. ## **Reference Books:** - 1. Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 4th Edition, Elsevier, 2019. - 2. Nader F. Mir: Computer and Communication Networks, 2nd Edition, Pearson Education, 2015. - 3. William Stallings, Data and Computer Communication 10th Edition, Pearson Education, Inc., 2014. ## Web links and Video Lectures (e-Resources): - 1. https://www.digimat.in/nptel/courses/video/106105183/L01.html - 2. http://www.digimat.in/nptel/courses/video/106105081/L25.html - 3. https://nptel.ac.in/courses/10610 # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - Implementation of various protocols using open source simulation tools. (5 marks) - Simulation of Personal area network, Home area network, achieve QoS etc. (5 marks) | THEORY | THEORY OF COMPUTATION | | V | |---------------------------------|-----------------------|-------------|-----| | Course Code | Course Code BCS503 | | 50 | | Teaching Hours/Week (L: T:P: S) | (3:2:0:0) | SEE Marks | 50 | | Total Hours of Pedagogy | 50 | Total Marks | 100 | | Credits | 04 | Exam Hours | 3 | | Examination type (SEE) | Theory | | | - Introduce core concepts in Automata and Theory of Computation. - Identify different Formal Language Classes and their Relationships. - Learn concepts of Grammars and Recognizers for different formal languages. - Prove or disprove theorems in automata theory using their properties. - Determine the decidability and intractability of Computational problems. ## **Teaching-Learning Process (General Instructions)** These are sample Strategies which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it. - 6. Introduce Topics in manifold representations. - 7. Show the different ways to solve the same problem with different approaches and encourage the students to come up with their own creative ways to solve them. - 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding. Module-1 10 Hours Introduction to Finite Automata, Structural Representations, Automata and Complexity. The Central Concepts of Automata Theory. Deterministic Finite Automata, Nondeterministic Finite Automata, An Application: Text Search, Finite Automata with Epsilon-Transitions. **TEXT BOOK: Sections 1.1, 1.5, 2.2,2.3,2.4,2.5** Module-2 10 Hours Regular Expressions, Finite Automata and Regular Expressions, Proving Languages not to be Regular. Closure Properties of Regular Languages, Equivalence and Minimization of Automata, Applications of Regular Expressions TEXT BOOK: Sections 3.1, 3.2 (Except 3.2.1), 3.3, 4.1, 4.2, 4.4 Module-3 10 Hours Context-Free Grammars, Parse Trees, Ambiguity in Grammars and Languages, Ambiguity in Grammars and Languages, Definition of the Pushdown Automaton, The Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automata. # TEXT BOOK: Sections 5.1, 5.2, 5.4, 6.1,6.2,6.3.1,6.4 ### Module-4 10 Hours Normal Forms for Context-Free Grammars, The Pumping Lemma for Context-Free Languages, Closure Properties of Context-Free Languages. ## **TEXT BOOK: Sections 7.1, 7.2, 7.3** Module-5 10 Hours Introduction to Turing Machines: Problems That Computers Cannot Solve, The Turing Machine, Programming Techniques for Turing Machines, Extensions to the Basic Turing Machine, Undecidability: A Language That Is Not Recursively Enumerable. TEXT BOOK: Sections 8.1,8.2, 8.3,8.4, 9.1, 9.2 ## Course outcome (Course Skill Set) At the end of the course, the student will be able to: - 1. Apply the fundamentals of automata theory to write DFA, NFA, Epsilon-NFA and conversion between them. - 2. Prove the properties of regular languages using regular expressions. - 3. Design context-free grammars (CFGs) and pushdown automata (PDAs) for formal languages. - 4. Design Turing machines to solve the computational problems. - 5. Explain the concepts of decidability and undecidability. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. The Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ### **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally reduced to 50 marks. ## **Suggested Learning Resources:** ### Books 1. John E Hopcroft, Rajeev Motwani, Jeffrey D. Ullman," Introduction to Automata Theory, Languages and Computation", Second Edition, Pearson. ### **Reference:** - 1. Elain Rich, "Automata, Computability and complexity", 1st Edition, Pearson Education, 2018. - 2. K.L.P Mishra, N Chandrashekaran, 3rd Edition, 'Theory of Computer Science', PHI, 2012. - 3. Peter Linz, "An introduction to Formal Languages and Automata ", 3rd Edition, Narosa Publishers, 1998. - 4. Michael Sipser: Introduction to the Theory of Computation, 3rd edition, Cengage learning, 2013. - 5. John C Martin, Introduction to Languages and The Theory of Computation, 3rd Edition, Tata McGraw –Hill Publishing Company Limited, 2013. ## Web links and Video Lectures (e-Resources): - https://archive.nptel.ac.in/courses/106/105/106105196/ - https://archive.nptel.ac.in/courses/106/106/106106049/ - https://nptelvideos.com/course.php?id=717 # Activity Based Learning (Suggested Activities in Class)/ Practical Based Learning - Open source tools (like JFLAP) to make teaching and learning more interactive [https://www.jflap.org/] (10 Marks) - Assignments at RBTL-4 (15 marks) | DATA VISI | Semester | V | | |----------------------------------|----------|------------|-----| | Course Code | BAIL504 | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 0:0:2:0 | SEE Marks | 50 | | Credits | 01 | Exam Hours | 100 | | Examination type (SEE) Practical | | | | - Understand the Importance of data Visualization for business intelligence and decision making. - Learn different approaches to understand the importance of visual perception. - Learn different data visualization techniques and tools. - Gain knowledge of effective data visuals to solve workplace problems. | | T | |-------|---| | Sl.NO | Experiments | | 1 | Getting Started - Tableau Workspace, Tableau terminologies, basic functionalities. | | 2 | Connecting to Data Source - Connecting to Database, Different types of Tableau Joins. | | 3 | Creating a View - formatting charts, adding filters, creating calculated fields and defining parameters. | | 4 | Dashboard Design and Storytelling – Components of Dashboard, Understanding how to place worksheets in Containers, Action filters and its types. | | 5 | Introducing Power BI –Components and the flow of work. Power BI Desktop Interface-The Report has five main areas. | | 6 | Querying Data from CSV - Query Editor, Connecting the data from the Excel Source, Clean, Transform the data. | | 7 | Creating Reports & Visualizations - Different types of charts, Formatting charts with Title, Colors. | | 8 | Dashboards - Filters in Power BI, Formatting dashboards. | | 9 | Analysis of revenue in sales dataset: i) Create a choropleth map (fill the map) to spot the special trends to show the state which has the highest revenue. ii) Create a line
chart to show the revenue based on the month of the year. | | | iii) Create a bin of size 10 for the age measure to create a new dimension to show the revenue. iv) Create a donut chart view to show the percentage of revenue per region by creating zero access in the calculated field. | | | v) Create a butterfly chart by reversing the bar chart to compare female & male revenue based on product category. | | | vi) Create a calculated field to show the average revenue per state & display profitable & non-profitable state. | | | vii) Build a dashboard. | | 10 | Analysis of GDP dataset: | | | i) Visualize the countries data given in the dataset with respect to latitude and longitude along with country name using symbol maps. | | | ii) Create a bar graph to compare GDP of Belgium between 2006 – 2026. | | | iii) Using pie chart, visualize the GDP of India, Nepal, Romania, South Asia, Singapore by the year 2010. | | | iv) Visualize the countries Bhutan & Costa Rica competing in terms of GDP. | # Template for Practical Course and if AEC is a practical Course Annexure-V | | v) Create a scatter plot or circle views of GDP of Mexico, Algeria, Fiji, Estonia from 2004 to 2006. | |-----|--| | | vi) Build an interactive dashboard. | | 11 | Analysis of HR Dataset: | | | i)Create KPI to show employee count, attrition count, attrition rate, attrition count, active employees, and | | | average age. | | | ii) Create a Lollipop Chart to show the attrition rate based on gender category. | | | iii) Create a pie chart to show the attrition percentage based on Department Category- Drag department | | | into colours and change automatic to pie. Entire view, Drag attrition count to angle. Label attrition count, | | | change to percent, add total also, edit label. | | | iv) Create a bar chart to display the number of employees by Age group, | | | v) Create a highlight table to show the Job Satisfaction Rating for each job role based on employee count. | | | vi) Create a horizontal bar chart to show the attrition count for each Education field Education field wise | | | attrition – drag education field to rows, sum attrition count to col, | | | vii) Create multiple donut chart to show the Attrition Rate by Gender for different Age group. | | 12 | Analysis of Amazon Prime Dataset: | | 1-2 | i) Create a Donut chart to show the percentage of movie and tv shows | | | ii) Create a area chart to shows by release year and type | | | iii) Create a horizontal bar chart to show Top 10 genre | | | iv) Create a map to display total shows by country | | | v) Create a text sheet to show the description of any movie/movies. | | | vi) Build an interactive Dashboard. | | | The Build all Meeracure Businessia | # Course outcomes (Course Skill Set): At the end of the course the student will be able to: - 1. Design the experiment to create basic charts and graphs using Tableau and Power BI. - 2. Develop the solution for the given real world problem. - 3. Analyze the results and produce substantial written documentation. @#@#@ ## Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together ### **Continuous Internal Evaluation (CIE):** CIE marks for the practical course are 50 Marks. The split-up of CIE marks for record/journal and test are in the ratio 60:40. - Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session. - Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. - Total marks scored by the students are scaled down to 30 marks (60% of maximum marks). - Weightage to be given for neatness and submission of record/write-up on time. - Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus. - In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce. - The suitable rubrics can be designed to evaluate each student's performance and learning ability. - The marks scored shall be scaled down to **20 marks** (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student. ### **Semester End Evaluation (SEE):** - SEE marks for the practical course are 50 Marks. - SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute. - The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University. - All laboratory experiments are to be included for practical examination. - (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall be decided jointly by examiners. - Students can pick one question (experiment) from the questions lot prepared by the examiners jointly. - Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) @#@#@ 12082024 # Template for Practical Course and if AEC is a practical Course Annexure-V Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 02 hours # **Suggested Learning Resources:** - 1. Microsoft Power BI Dashboards Step by Errin O'Connor, 2019 by Pearson Education, Inc - 2. Information Dashboard Design: Displaying Data for At-a-glance Monitoring" by Stephen Few - 3. https://help.tableau.com/current/guides/get-started-tutorial/en-us/get-started-tutorial-home.htm - 4. https://www.tutorialspoint.com/tableau/index.htm - 5. https://www.simplilearn.com/tutorials/power-bi-tutorial/power-bi-vs-tableau @#@#@ 12082024 | COMPUTER VISION | | Semester | 5 | |---------------------------------|---------|-------------|-----| | Course Code BAI151A | | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 3:0:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 3 | | Examination type (SEE) | Theory | | | - CLO1: To understand the fundamentals of computer vision and digital image processing - CLO2: To introduce the processes involved image enhancement and restoration. - CLO3: To facilitate the students to gain understanding color image processing and morphology. - CLO5: To impart the knowledge of image segmentation and object recognition techniques. ## **Teaching-Learning Process (General Instructions)** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it. - 6. Use animations/videos to help the students to understand the concepts. - 7. Demonstrate the concepts using a suitable programming language. ### Module-1 **Introduction:** What is computer vision? A brief history. **Image Formation:** Photometric image formation, The digital camera. **Image processing:** Point operators, Linear filtering. **Textbook-1:** Chap-1 (1.1, 1.2), Chap-2 (2.2, 2.3), Chap-3 (3.1, 3.2) ## Module-2 **Image processing**: More neighborhood operators, Fourier transforms, Pyramids and wavelets, and Geometric transformations. **Textbook-1:** Chap- 3 (3.3 - 3.6) ### Module-3 **Image Restoration and Reconstruction:** A model of Image degradation/restoration process, restoration in the presence of noise only, periodic noise reduction by frequency domain filtering. **Image Segmentation:** Fundamentals, Point, Line and edge detection, thresholding (Foundation & Basic global thresholding only), Segmentation by region growing & region splitting & merging. **Textbook-2:** Chap-5 (5.1 to 5.4), Chap-10 (10.1 to 10.3.2, 10.4) ### Module-4 **Color Image Processing:** Color fundamentals, color models, Pseudocolor image processing, full color image processing, color transformations, color image smoothing and sharpening, Using color in image segmentation,
Noise in color images. Textbook-2: Chap-6 (6.1-6.8) ### Module-5 **Morphological Image Processing:** Preliminaries, Erosion and Dilation, opening and closing, Hit-ormiss transform, some basic morphological algorithms. Feature Extraction: Background, Boundary preprocessing (Boundary following & Chain codes only). **Image pattern Classification:** Background, Patterns and classes, Pattern classification by prototype matching (Minimum distance classifier only). Textbook-2: Chap -9 (9.1-9.5), Chap-11(11.1-11.2.2), Chap-12 (12.1-12.3.1) ## Course outcome (Course Skill Set) At the end of the course, the student will be able to: - 1. Explain the fundamentals of computer vision and its applications. - 2. Apply the image enhancement techniques for smoothing and sharpening of images. - 3. Compare the different image restoration and segmentation techniques. - 4. Demonstrate the smoothing and sharpening techniques for color images. - 5. Explain morphological, feature extraction, and pattern classification techniques for object recognition. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assessment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Implementation of Image processing and video processing techniques in Java/Python/Matlab is recommended. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. # **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. 4. Marks scored shall be proportionally reduced to 50 marks ### **Suggested Learning Resources:** ### **Textbooks** - 1. Richard Szeliski, Computer Vision: Algorithms and Applications (Texts in Computer Science), 2nd Edition, 2022, Springer. - 2. Rafael C G., Woods R E. and Eddins S L, Digital Image Processing, Pearson, 4th edition, 2019. ### Reference books - 1. David Forsyth and Jean Ponce, Computer Vision: A Modern Approach, 2nd Edition, Pearson, 2015. - 2. Reinhard Klette, Concise Computer Vision An Introduction into Theory and Algorithms, Springer, 2014. # Web links and Video Lectures (e-Resources): - Virtual Labs: https://cse19-iiith.vlabs.ac.in/ - https://onlinecourses.nptel.ac.in/noc21_ee78/preview - Introduction to Machine Vision: https://www.youtube.com/watch?v=tY2gcz0bpfU - https://coral.ise.lehigh.edu/optml/files/2019/10/OptML CV tutorial 1 compressed.pdf # Activity Based Learning (Suggested Activities in Class)/ Practical Based Learning - Programming Assignment-1: Implementation of important concepts of Image enhancement (point & filters) and restoration techniques with C++/Java/Python 10 Marks - Programming Assignment-2: Implementation of segmentation, Morphological and color image processing techniques with C++/Java/Python 15 Marks | INFORMATION RETRIEVAL | | Semester | V | |---------------------------------|---------|-------------|-----| | Course Code | BAI515B | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 3:0:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | | Examination type (SEE) | Theory | | | - Understand the need of an information retrieval system. - Understand various retrieval models and the factors of evaluation. - Explore on text, query and indexed based processing for information retrieval. - Realize the importance of user interfaces for visualization and the web based search. # **Teaching-Learning Process (General Instructions)** These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - 5. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding. - 6. Use any of these methods: Chalk and board, Active Learning, Case Studies. ### Module-1 **Introduction:** Information retrieval, IR problem, IR System, The web. **User interfaces for search:** Introduction, How people search, Search interfaces today, Visualization on search interfaces, Design and evaluation of search interfaces. Textbook: Chapter 1: 1.1 to 1.4, Chapter 2: 2.1 to 2.5 ### Module-2 **Modeling:** IR models, Classic information retrieval, Alternative set theoretic models, Alternative algebraic models, Alternative probabilistic models, Other models. Textbook: Chapter 3: 3.1 to 3.6 ## Module-3 **Retrieval Evaluation:** Retrieval metrics, Reference Collections, User-based evaluation **Relevance feedback and Query expansion:** A framework for feedback methods, Explicit relevance feedback, Explicit feedback through clicks, Implicit feedback through local analysis, Implicit feedback through global analysis **Documents - Languages and Properties:** Metadata, Document formats, Text properties, Document preprocessing, Organizing documents, Text compression Textbook: Chapter 4: 4.3 to 4.5, Chapter 5: 5.2 to 5.6, Chapter 6: 6.2 to 6.3, 6.5 to 6.8 | M | n | ď | πl | e-4 | |---|---|---|----|-----| | | | | | | **Indexing and Searching:** Inverted indexes, Signature files, Suffix trees and suffix arrays, Sequential searching, Multi-dimensional indexing. Textbook: Chapter 9: 9.2 to 9.6 ## Module-5 **Web retrieval:** The web, Search engine architectures, Search engine ranking, Managing web data, Search engine user interaction. **Structured Text Retrieval:** Structuring Power, Early text retrieval models, XML retrieval, XML retrieval evaluation. Textbook: Chapter 11: 11.2 to 11.7, Chapter 13: 13.2 to 13.5 # **Course outcome (Course Skill Set)** At the end of the course, the student will be able to: - 1. Identify the models and the tools for building an Information Retrieval system. - 2. Apply query based operations for information retrieval. - 3. Use of text based operations for information retrieval from the documents. - 4. Apply indexing and searching techniques for information retrieval. - 5. Design user interface for search and retrieval of information from the web/documents. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ## **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ### **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3.
The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally reduced to 50 marks ### **Suggested Learning Resources:** ### **Text Books:** 1. Ricardo BaezaYates and BerthierRibeiroNeto, Modern Information Retrieval, 2nd Edition, Pearson 2011 ### **Reference Books:** - 1. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010. - 2. Information Storage and Retrieval Systems: Theory and Implementation, Kowalski, Gerald, Mark T Maybury, Springer, 2nd Edition, 2002 - 3. Modern Information Retrieval, Ricardo Baeza-Yates, Pearson Education, 2007. # Web links and Video Lectures (e-Resources): - https://www.youtube.com/watch?v=cv7ztWiIaAM - https://www.youtube.com/watch?v=ecRMy60oBrA - https://www.youtube.com/watch?v=dXHxPvAIwcI - https://www.youtube.com/playlist?list=PLpwnR8mPhhf8m7L_b9cSRLdjPW2soerAd - https://www.youtube.com/watch?v=m0oiA0gSQFw - https://www.youtube.com/watch?v=yluvahNq3wk # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - Design and development of Question-Answering System/Social media analytic etc... 15 Marks - Implementation of Web based/XML based retrieval applications 10 Marks | UNIX SYSTEM PROGRAMMING | | Semester | V | |---------------------------------|---------|-------------|-----| | Course Code | BCS515C | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 3:0:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | | Examination type (SEE) | Theory | | | Course objectives: This course will enable students to - To help the students to understand effective use of Unix concepts, commands and terminology. Identify, access, and evaluate UNIX file system - Explain the fundamental design of the unix operating system - Familiarize with the systems calls provided in the unix environment - Design and build an application/service over the unix operating system ## **Teaching-Learning Process (General Instructions)** These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it. - 6. Introduce Topics in manifold representations. - 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them. - 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding. ## Module-1 **Introduction:** Unix Components/Architecture. Features of Unix. The UNIX Environment and UNIX Structure, Posix and Single Unix specification. General features of Unix commands/command structure. Command arguments and options. Basic Unix commands such as echo, printf, ls, who, date, passwd, cal, Combining commands. Meaning of Internal and external commands. The type command: knowing the type of a command and locating it. The root login. Becoming the super user: su command. **Unix files:** Naming files. Basic file types/categories. Organization of files. Hidden files. Standard directories. Parent-child relationship. The home directory and the HOME variable. Reaching required files- the PATH variable, manipulating the PATH, Relative and absolute pathnames. Directory commands – pwd, cd, mkdir, rmdir commands. The dot (.) and double dots (..) notations to represent present and parent directories and their usage in relative path names. File related commands – cat, mv, rm, cp, wc and od commands. # **Text Book1: Chapter-1, 2, 3, 4, 5** ### Module-2 **File attributes and permissions:** The ls command with options. Changing file permissions: the relative and absolute permissions changing methods. Recursively changing file permissions. Directory permissions. **The shells interpretive cycle:** Wild cards. Removing the special meanings of wild cards. Three standard files and redirection. **Connecting commands:** Pipe. Basic and Extended regular expressions. The grep, egrep. Typical examples involving different regular expressions. **Shell programming:** Ordinary and environment variables. The profile. Read and read-only commands. Command line arguments exit and exit status of a command. Logical operators for conditional execution. The test command and its shortcut. The if, while, for and case control statements. The set and shift commands and handling positional parameters. The here (<<) document and trap command. Simple shell program examples. # **Text Book1: Chapter-6,8,13,14** ## **Module-3** **Unix Standardization and Implementations:** Introduction, Unix Standardization, UNIX System Implementation. File I/O: Introduction, File Description, open, create, read, write, close, fcntl functions. **Files and Dictionaries:** mkdir and rmdir functions, reading dictionaries, chdir, fchdir and getcwd functions. Device Special files. **The Environment of a UNIX Process:** Introduction, main function, Process Termination, Command-Line Arguments, Environment List, Memory Layout of a C Program, Shared Libraries, Memory Allocation, Environment Variables, setjmp and longjmp Functions, getrlimit, setrlimit Functions. Text Book 2: 2,3,4,7. ### Module-4 **Process Control:** Introduction, Process Identifiers, fork, vfork, exit, wait, waitjid, wait3, wait4 Functions, Race Conditions, exec Functions. **Overview of IPC Methods**, Pipes, popen, pclose Functions, Coprocesses, FIFOs, System V IPC, Message Queues, Semaphores. **Shared Memory**, Client-Server Properties, Passing File Descriptors, An Open Server-Version 1. Text Book2: Chapter 8, 15,17 ### **Module-5** **Signals and Daemon Processes:** Introduction, Signal Concepts, Signal Functions, SIGCLD Semantics, Kill and Raise functions, Alarm and Pause Functions, Signal Sets, sigprocemask Function, signeding function, sigaction function, sigsetjmp and siglongjmp functions, sigsuspend function, abort function, system function, sleep, nanosleep and clock_nanosleep functions, sigqueue functions, job-control signals, signal names and numbers. **Daemon Processes:** Introduction, Daemon Characteristics, Coding Rules, Error Logging, Client-Server Model. ## Text Book 2: Chapter 10, 13 ## **Course outcome (Course Skill Set)** At the end of the course, the student will be able to: - Demonstrate the basics of Unix concepts and commands. - Demonstrate the UNIX file system. - Apply comands to reflect changes in file system. - Demonstrate IPC and process management. - Develop an application/service over a Unix system. ## **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ### **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally reduced to 50 marks @#@#@ # **Suggested Learning Resources:** ## **Text Books:** - 1. Sumitabha Das., Unix Concepts and Applications., 4thEdition., Tata McGraw Hill - 2. W. Richard Stevens: Advanced Programming in the UNIX Environment, 2nd Edition, Pearson Education, 2005 # **Reference Books:** - 1. Unix System Programming Using C++ Terrence Chan, PHI, 1999. - 2. M.G. Venkatesh Murthy: UNIX & Shell Programming, Pearson Education. - 3. Richard Blum, Christine Brenham: Linux Command Line and Shell Scripting Bible, 2ndEdition, Wiley, 2014. # Web links and Video Lectures (e-Resources): https://www.youtube.com/watch?v=ffYUfAqEamY https://www.youtube.com/watch?v=Q05NZiYFcD0 https://www.youtube.com/watch?v=8GdT53KDIyY
https://www.youtube.com/watch?app=desktop&v=3Pga3y7rCgo # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning Programming assignment -1 (Shell level) - 10 marks Programming assignment -2 (API level) - 15 marks | DISTRIB | Semester | 5 | | |---------------------------------|----------|-------------|-----| | Course Code BCS515D | | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 3:0:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 3Hrs | Total Marks | 100 | | Credits | 03 | Exam Hours | | | Examination type (SEE) | Theory | | | - Understand the goals and challenges of distributed systems - Describe the architecture of RPC/RMI, distributed file systems and name services - Learn clock synchronization algorithms to monitor and order the events, mutual exclusion, election and consensus algorithms. - Study the fundamental concepts and algorithms related to distributed transactions and replication. # **Teaching-Learning Process (General Instructions)** These are sample strategies which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - **2.** Use of Video/Animation to explain functioning of various concepts. - **3.** Encourage collaborative (Group Learning) Learning in the class. - **4.** Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - **5.** Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it. - **6.** Introduce Topics in manifold representations. - **7.** Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them. - 8. Demonstrate every concept by implementing an OpenGL program. ### Module-1 **CHARACTERIZATION OF DISTRIBUTED SYSTEMS**: Introduction, Focus on resource sharing, Challenges. **REMOTE INVOCATION:** Introduction, Request-reply protocols, Remote procedure call, Introduction to Remote Method Invocation. **Textbook: Chapter- 1.1,1.4,1.5, 5.1-5.5** ## Module-2 **DISTRIBUTED FILE SYSTEMS:** Introduction, File service architecture. **NAME SERVICES:** Introduction, Name services and the Domain Name System, Directory services. Textbook: Chapter- 12.1,12.2, 13.1-13.3 ### Module-3 **TIME AND GLOBAL STATES:** Introduction, Clocks, events and process states, Synchronizing Physical clocks, Logical time and logical clocks, Global states **Textbook: Chapter- 14.1-14.5** ### Module-4 **COORDINATION AND AGREEMENT:** Introduction, Distributed mutual exclusion, Elections, Coordination and agreement in group communication, Consensus and related problems. Textbook: Chapter -15.1-15.5 ## **Module-5** **DISTRIBUTED TRANSACTIONS:** Introduction, Flat and nested distributed transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. **REPLICATION:** Introduction. **Textbook: Chapter -17.1-17.6, 18.1** # Course outcome (Course Skill Set) At the end of the course, the student will be able to: - 1. Identify the goals and challenges of distributed systems - 2. Demonstrate the remote invocation techniques for communication - 3. Describe the architecture of distributed file systems and name services - 4. Apply clock synchronization algorithms to monitor and order the events. - 5. Analyze the performance of mutual exclusion, election and consensus algorithms. - 6. Illustrate the fundamental concepts and algorithms related to distributed transactions and replication ## **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ### **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally reduced to 50 marks ## **Suggested Learning Resources:** ### Textbook's: **1.** George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012. ### Web links and Video Lectures (e-Resources): • https://www.youtube.com/watch?v=Azyizl9w2xo&list=PLrjkTql3jnm9FEOXHA_qjRTMO Dlalk-W ## Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - Programming Assignment (15 marks) - Literature Review/ Case Studies (10 marks) @#@#@ | EXPLORATORY DATA ANALYSIS | | Semester | 5 | |---------------------------------|-----------|-------------|-----| | Course Code | CIE Marks | 50 | | | Teaching Hours/Week (L: T:P: S) | 3:0:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 3 | | Examination type (SEE) | Theory | | | - CLO1: To equip students with Python, IPython, and Jupyter for data analysis tasks. - CLO2: To provide a comprehensive understanding of NumPy for scientific computations. - CLO3: To introduce foundational and advanced data manipulation techniques using Pandas - CLO4: To enhance data visualization skills using Matplotlib and Seaborn - CLO5: To introduce Machine Learning concept with practical applications using Scikit-Learn. - CLO6: To promote the practical application of data analysis tools and techniques on real-world datasets # **Teaching-Learning Process (General Instructions)** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation/Demonstration to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. - 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it. - 6. Use animations/videos to help the students to understand the concepts. - 7. Demonstrate the concepts using PYTHON and its libraries ### Module-1 **Introduction to Python and NumPy:** Getting Started in IPython and Jupyter, Enhanced Interactive Features, The Basics of NumPy Arrays, Sorted Arrays, Structured Data: NumPy's Structured Arrays ### Textbook: Chapter 2, Chapter 5, Chapter 11, Chapter 12, Chapter 1(Not for CIE/SEE), #### Module-2 **Data Manipulation with Pandas - I:** Introducing Pandas Objects, Handling Missing Data, Hierarchical Indexing, Pivot Tables. ### Textbook: Chapter 13, Chapter 16, Chapter 17, Chapter 21 ### Module-3 **Data Manipulation with Pandas - II:** Vectorized String Operations, Working with Time Series, High-Performance Pandas: eval and query ## Textbook: Chapter 22, Chapter 23, Chapter 24 #### Module-4 **Data Visualization with MatPlotlib:** General Matplotlib Tips, Simple Line Plots, Simple Scatter Plots, Visualization with Seaborn Textbook: Chapter 25, Chapter 26, Chapter 27, Chapter 36 ### Module-5 **Introduction to Machine Learning:** What Is Machine Learning?, Introducing Scikit-Learn, Hyperparameters and Model Validation Textbook: Chapter 37, Chapter 38, Chapter 39 ## Course outcome (Course Skill Set) At the end of the course, the student will be able to: - 1. Demonstrate the application of the NumPy for performing data analysis tasks. - 2. Make use of Pandas for various data manipulation tasks. - 3. Apply advanced data manipulation techniques to real-world datasets. - 4. Develop data visualizations using Matplotlib and Seaborn to effectively communicate data insights. - 5. Explain the fundamental concepts of machine learning and validation models using Scikit-Learn. # **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for
Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ## **Continuous Internal Evaluation:** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assessment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Implementation of Image processing and video processing techniques in Java/Python/Matlab is recommended. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ## **Semester-End Examination:** Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours). - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. - 3. The students have to answer 5 full questions, selecting one full question from each module. - 4. Marks scored shall be proportionally reduced to 50 marks ### **Suggested Learning Resources:** ### **Text Books:** 1. Jake VanderPlas - Python Data Science Handbook: Essential Tools for Working with Data, Oreilly 2nd Edition, 2022. ### Reference Book: 2. https://python4csip.com/files/download/Data%20Visualization.pdf # Web links and Video Lectures (e-Resources): - Numpy Tutorial https://www.w3schools.com/python/numpy/default.asp - Pandas Tutorial https://www.w3schools.com/python/pandas/default.asp - Matplotlib Tutorial https://www.w3schools.com/python/matplotlib_intro.asp - Introduction to ML with Scikit Learn https://scikit-learn.org/1.4/tutorial/basic/tutorial.html # Activity Based Learning (Suggested Activities in Class)/ Practical Based Learning - Programming Assignment-1: Implementation of important concepts of data manipulation using NumPy and Pandas (Python) 10 Marks - Programming Assignment-2: Implementation of simple Machine Learning models with Visualization using Python (MatPlotlib, Scikitlearn) - 15 Marks | Environmental Studies and E-Waste Management | | Semester | V | |--|---------|-------------|-----| | Course Code | BCS508 | CIE Marks | 50 | | Teaching Hours/Week (L: T:P: S) | 1:0:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 14 | Total Marks | 100 | | Credits | 01 | Exam Hours | 1 | | Examination type (SEE) | Theory | | | - Identify the major challenges of environmental issues - Develop skills, critical thinking and demonstrate socio-economic skills for Environmental protection - Analyze the impact of issues w. r. t. waste management ## **Teaching-Learning Process (General Instructions)** These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. - 2. Use of Video/Animation to explain functioning of various concepts. - 3. Encourage collaborative (Group Learning) Learning in the class. - 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes Critical thinking. - 5. Adopt Case study Based Learning (CBL), which fosters students' analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyse information rather than simply recall it. - 6. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding. ### Module-1 ### Ecosystem and Sustainability: Ecosystem: Structure of Ecosystem, Types: Forest, Desert, Wetlands, Riverine, Oceanic ecosystems. Sustainability: 17SDG targets and possible actions. Self-Study Component (SSC): Components of the environment. Textbook 1: CH- 3, e-resource: 1 ### Module-2 ## Natural resources and Energy: Natural Resources: Water resources – Availability & Quality aspects, Water borne diseases & water induced diseases, Fluoride problem in drinking water. Energy: Different types of energy, Conventional sources & Non -Conventional sources of Energy, Solar energy, Wind Energy, Hydrogen as an alternative energy Self-Study Component (SSC): Alternative Energy sources Textbook 1: CH- 2 ### Module-3 ### **Environmental Pollution:** Environmental Pollution: Water Pollution, Noise pollution, Air pollution (Sources, Impacts, Preventive measures and Public Health Aspects. Self-Study Component (SSC): Case studies of air pollution episodes Textbook 1: CH-5 ### Module-4 ## Waste management: Waste management: Solid Waste Management , types and sources, functional elements of SWM, Biomedical Waste Management - Sources, Characteristics Environmental Legislation: Solid Waste Management Rules, 2016, Biomedical Waste Management Rules, 2016. # TEMPLATE for AEC (if the course is a theory) Annexure-IV Self-Study Component (SSC): Case studies on waste management options Textbook 1: CH-6, e-resource:2 ## **Module-5** ## E - Waste Management E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules, 2023, 2024 Textbook 1: CH- 6, Textbook 2: CH-2, e-resource:3 # Course outcome (Course Skill Set) At the end of the course the student will be able to: - 1. Comprehend the principles of ecology and environmental issues pertaining to air, land, and water on a global scale. - 2. Acquire observation skills for solving problems related to the environment. - 3. Conduct survey to describe the realities of waste management system. ## Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ### **Continuous internal Examination (CIE)** - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ## **Semester End Examinations (SEE)** SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is **01 hour.** The student has to secure a minimum of 35% of the maximum marks meant for SEE. OR MCQ (Multiple Choice Questions) are preferred for 01 credit courses, however, if course content demands the general question paper pattern that followed for 03 credit course, then - 1. The question paper will have ten questions. Each question is set for 10 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module may or may not have the sub-questions (with maximum sub-questions of 02, with marks distributions 5+5, 4+6, 3+7). - 3. The students have to answer 5 full questions, selecting one full question from each module. ## **Suggested Learning Resources:** ### **Textbooks** - 1. S M Prakash, "Environmental Studies" 3rd Edition, Elite Publishing House, Mangalore, 2018. - 2. Hester R.E., and Harrison R.M, Electronic Waste Management. Science, 2009. ### Reference Books: - 1. Earch Barucha, "Environmental Studies for UG students", 2004. - 2. Benny Joseph (2005), "Environmental Studies", Tata McGraw Hill Publishing Company Limited. - 3. R. Rajagopalan, "Environmental Studies- From Crisis to
Cure", 2nd Edition, Oxford university press, New Delhi, 2013. - 4. Johri R., E-waste: implications, regulations, and management in India and current global best practices, TERI Press, New Delhi. - 5. Raman Sivakumar, "Principles of Environmental Science and Engineering", 2nd edition, Cengage learning Singapur, 2005. - 6. G. Tyler Miller Jr., "Environmental Science working with the Earth", Eleventh Edition, Thomson Brooks /Cole, 2006 - 7. Dr. Pratiba Singh, Dr.Anoop Singh and Dr. Piyush Malaviya, "Text Book of Environmental and Ecology", Acme Learning Pvt. Ltd. New Delhi. # TEMPLATE for AEC (if the course is a theory) Annexure-IV 8. P. Meenakshi, "Elements of Environmental Science and Engineering", Prentice Hall of India Private Limited, New Delhi, 2006 # Web links and Video Lectures (e-Resources): - 1. https://sdgs.un.org/goals - 2. https://kspcb.karnataka.gov.in/waste-management/biomedical-waste - 3. E Waste (Management) Rules, 2022: https://kspcb.karnataka.gov.in/sites/default/files/inline-files/E%20Waste%20%28Management%29%20Rules%2C%202022.pdf # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - Analysis report of case study specified in the Textbooks and reference books (one per student). (10 marks) - Field Survey (In Team): The students' team of the size of 2 to 4 are expected to visit the organization or Industry understand the waste management, utilization of energy, pollution concerns, e-waste handling and other related suggested best practices specified in the syllabus and then submit a detailed visit report to the concerned staff. (15 marks)